File size: 7,288 Bytes
dddb041
 
b8a701a
b46e87b
 
77b1ab6
 
 
 
 
 
 
 
 
 
 
 
 
b46e87b
dddb041
b46e87b
dddb041
 
 
b46e87b
 
 
 
 
b1b4f10
 
a146eda
a166abf
3733cf2
ccde57b
 
b46e87b
b1b4f10
ccde57b
b8a701a
b46e87b
77b1ab6
b1b4f10
b46e87b
a146eda
b1b4f10
b46e87b
0347515
db08793
b46e87b
 
 
 
77b1ab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46e87b
 
 
 
 
 
 
77b1ab6
 
 
 
b46e87b
a146eda
b46e87b
 
 
 
322db57
77b1ab6
 
b46e87b
 
 
 
9f29ad9
b46e87b
b1b4f10
b46e87b
538d554
77b1ab6
 
 
 
 
 
 
 
 
 
 
b46e87b
77b1ab6
057bc07
 
b46e87b
 
 
77b1ab6
 
a200bb2
b46e87b
 
 
77b1ab6
 
 
 
 
 
23f25b9
b46e87b
77b1ab6
 
 
 
 
 
 
23f25b9
77b1ab6
c133494
b1b4f10
b46e87b
 
057bc07
77b1ab6
057bc07
 
c03b3ba
b46e87b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import json
import logging
import torch
from PIL import Image
from diffusers import (
    DiffusionPipeline, 
    EulerDiscreteScheduler, 
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    DEISMultistepScheduler,
    UniPCMultistepScheduler
)
import spaces

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")

def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )

@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]

    # Load LoRA weights
    pipe.load_lora_weights(lora_path)

    # Set scheduler
    scheduler_config = pipe.scheduler.config
    if scheduler == "DPM++ 2M":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
    elif scheduler == "DPM++ 2M Karras":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM++ 2M SDE":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
    elif scheduler == "DPM++ 2M SDE Karras":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
    elif scheduler == "DPM++ SDE":
        pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
    elif scheduler == "DPM++ SDE Karras":
        pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM2":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "DPM2 Karras":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DPM2 a":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "DPM2 a Karras":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "Euler":
        pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "Euler a":
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "Heun":
        pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "LMS":
        pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
    elif scheduler == "LMS Karras":
        pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
    elif scheduler == "DEIS":
        pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
    elif scheduler == "UniPC":
        pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)

    # Set random seed for reproducibility
    generator = torch.Generator(device="cuda").manual_seed(seed)

    # Generate image
    image = pipe(
        prompt=f"{prompt} {trigger_word}",
        negative_prompt=negative_prompt,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        cross_attention_kwargs={"scale": lora_scale},
    ).images[0]

    # Unload LoRA weights
    pipe.unload_lora_weights()

    return image

with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("# artificialguybr LoRA Portfolio")
    gr.Markdown(
        "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
        "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
        "Special thanks to Hugging Face for their Diffusers library and Spaces platform."
    )

    selected_index = gr.State(None)

    with gr.Row():
        with gr.Column(scale=2):
            result = gr.Image(label="Generated Image", height=768)
            generate_button = gr.Button("Generate", variant="primary")

        with gr.Column(scale=1):
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=2
            )

    with gr.Row():
        with gr.Column():
            prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
            selected_info = gr.Markdown("")
            prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")

        with gr.Column():
            with gr.Row():
                cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
            
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
            
            with gr.Row():
                seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
                lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
            
            scheduler = gr.Dropdown(
                label="Scheduler", 
                choices=[
                    "DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
                    "DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
                    "Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
                ],
                value="DPM++ 2M SDE Karras"
            )

    gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
    
    generate_button.click(
        fn=run_lora,
        inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale],
        outputs=[result]
    )

app.queue()
app.launch()