File size: 1,858 Bytes
dddb041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
import requests
import io
from PIL import Image
import json
import os

# Load LoRAs from JSON
with open('loras.json', 'r') as f:
    loras = json.load(f)

# API call function
def query(payload, api_url, token):
    headers = {"Authorization": f"Bearer {token}"}
    response = requests.post(api_url, headers=headers, json=payload)
    return io.BytesIO(response.content)

# Gradio UI
with gr.Blocks(css="custom.css") as demo:
    title = gr.HTML(
        """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    gallery = gr.Gallery(
        value=[(item["image"], item["title"]) for item in loras],
        label="LoRA Gallery",
        allow_preview=False,
        columns=3,
        elem_id="gallery",
        show_share_button=False
    )
    prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
    advanced_options = gr.Accordion("Advanced options", open=False)
    weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
    result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")

    # Define the function to run when the button is clicked
    def run_lora(prompt, weight, selected_state):
        selected_lora = loras[selected_state]
        api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
        trigger_word = selected_lora["trigger_word"]
        token = os.getenv("API_TOKEN")
        payload = {"inputs": f"{prompt} {trigger_word}"}
        
        image_bytes = query(payload, api_url, token)
        return Image.open(image_bytes)

    prompt.submit(
        fn=run_lora,
        inputs=[prompt, weight, selected_state],
        outputs=[result],
    )