Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,858 Bytes
dddb041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import requests
import io
from PIL import Image
import json
import os
# Load LoRAs from JSON
with open('loras.json', 'r') as f:
loras = json.load(f)
# API call function
def query(payload, api_url, token):
headers = {"Authorization": f"Bearer {token}"}
response = requests.post(api_url, headers=headers, json=payload)
return io.BytesIO(response.content)
# Gradio UI
with gr.Blocks(css="custom.css") as demo:
title = gr.HTML(
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
elem_id="title",
)
selected_state = gr.State()
gallery = gr.Gallery(
value=[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
advanced_options = gr.Accordion("Advanced options", open=False)
weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")
# Define the function to run when the button is clicked
def run_lora(prompt, weight, selected_state):
selected_lora = loras[selected_state]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
trigger_word = selected_lora["trigger_word"]
token = os.getenv("API_TOKEN")
payload = {"inputs": f"{prompt} {trigger_word}"}
image_bytes = query(payload, api_url, token)
return Image.open(image_bytes)
prompt.submit(
fn=run_lora,
inputs=[prompt, weight, selected_state],
outputs=[result],
)
|