File size: 13,725 Bytes
e85f548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os
import logging
import json
import requests
from typing import List, Dict, Any, Optional, Union

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class OpenRouterFreeAdapter:
    """Adapter for accessing only free LLMs through OpenRouter.ai API"""

    def __init__(
        self,
        api_key: str = None,
        base_url: str = "https://openrouter.ai/api/v1"
    ):
        """
        Initialize the OpenRouter adapter for free models only.

        Args:
            api_key: OpenRouter API key. If None, will try to load from environment.
            base_url: Base URL for the OpenRouter API.
        """
        self.api_key = api_key or os.getenv("OPENROUTER_API_KEY")
        if not self.api_key:
            logger.warning(
                "No OpenRouter API key provided. Using limited free access.")

        self.base_url = base_url
        self.app_url = ""

        # Get app info for better tracking
        self.app_name = os.getenv("APP_NAME", "AskMyDocs")

        self.update_best_free_model()

    def update_best_free_model(self) -> bool:
        """
        Find and set the best available free model.

        Returns:
            Boolean indicating success.
        """
        free_models = self.list_free_models()

        if not free_models:
            # If API call fails, use fallback list of known free models
            logger.warning(
                "Could not retrieve free models list. Using fallback models.")
            self.model = self._get_fallback_model()
            return False

        # Sort models by preference:
        # 1. Llama 4 models (highest priority)
        # 2. Gemini models
        # 3. Mistral models
        # 4. DeepSeek models
        # 5. Others
        ranked_models = self._rank_free_models(free_models)

        if ranked_models:
            self.model = ranked_models[0]["id"]
            logger.info(f"Selected free model: {self.model}")
            return True
        else:
            self.model = self._get_fallback_model()
            logger.warning(
                f"No suitable free models found. Using fallback: {self.model}")
            return False

    def _rank_free_models(self, free_models: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Rank free models by preference for document QA tasks.

        Args:
            free_models: List of free model dictionaries.

        Returns:
            Sorted list of models by preference.
        """
        # Define preference tiers
        tier_1_patterns = ["llama-4", "llama4"]
        tier_2_patterns = ["gemini", "claude"]
        tier_3_patterns = ["mistral", "mixtral"]
        tier_4_patterns = ["deepseek"]

        # Helper function to determine tier
        def get_model_tier(model_id: str) -> int:
            model_id_lower = model_id.lower()

            # Check for free tag/suffix
            is_free = ":free" in model_id_lower or "-free" in model_id_lower
            if not is_free:
                return 99  # Deprioritize non-free models

            # Check pattern matches
            for pattern in tier_1_patterns:
                if pattern in model_id_lower:
                    return 1

            for pattern in tier_2_patterns:
                if pattern in model_id_lower:
                    return 2

            for pattern in tier_3_patterns:
                if pattern in model_id_lower:
                    return 3

            for pattern in tier_4_patterns:
                if pattern in model_id_lower:
                    return 4

            return 5  # Other free models

        # Sort by tier, then by context length (longer is better)
        ranked_models = sorted(
            free_models,
            key=lambda m: (
                get_model_tier(m["id"]),
                # Negative to sort in descending order
                -m.get("context_length", 0)
            )
        )

        return ranked_models

    def _get_fallback_model(self) -> str:
        """
        Get a fallback model if API calls fail.

        Returns:
            Model ID string for a known free model.
        """
        # List of known free models, ordered by preference
        fallback_models = [
            "meta-llama/llama-4-scout:free",
            "google/gemini-2.5-pro-exp-03-25:free",
            "mistralai/mistral-small-3.1-24b-instruct:free",
            "deepseek/deepseek-v3-base:free",
            "nousresearch/deephermes-3-llama-3-8b-preview:free",
            "huggingfaceh4/zephyr-7b-beta"  # Always fallback to this older but reliable one
        ]

        return fallback_models[0]

    def _get_headers(self) -> Dict[str, str]:
        """
        Get headers for OpenRouter API requests.

        Returns:
            Dictionary of headers.
        """
        headers = {
            "Content-Type": "application/json"
        }

        # Add API key if available
        if self.api_key:
            headers["Authorization"] = f"Bearer {self.api_key}"

        headers["HTTP-Referer"] = self.app_url
        headers["X-Title"] = self.app_name

        return headers

    def list_models(self) -> List[Dict[str, Any]]:
        """
        List available models on OpenRouter.

        Returns:
            List of model information dictionaries.
        """
        try:
            headers = self._get_headers()

            response = requests.get(
                f"{self.base_url}/models",
                headers=headers
            )

            if response.status_code == 200:
                return response.json().get("data", [])
            else:
                logger.error(
                    f"Error listing models: {response.status_code} - {response.text}"
                )
                return []

        except Exception as e:
            logger.error(f"Exception listing models: {str(e)}")
            return []

    def list_free_models(self) -> List[Dict[str, Any]]:
        """
        List models that are free to use on OpenRouter.

        Returns:
            List of free model information dictionaries.
        """
        # Get all models
        models = self.list_models()

        # Filter for free models - looking for multiple indicators
        free_models = []
        for model in models:
            model_id = model.get("id", "").lower()
            pricing = model.get("pricing", {})

            # Check various indicators that a model is free
            is_free = False

            # Check for explicit free tag in model ID
            if ":free" in model_id or "-free" in model_id:
                is_free = True

            # Check for zero pricing
            elif (pricing.get("prompt") == 0 and pricing.get("completion") == 0):
                is_free = True

            # Check for free_tier indicator if present
            elif model.get("free_tier", False):
                is_free = True

            if is_free:
                free_models.append(model)

        # Log the number of free models found
        logger.info(f"Found {len(free_models)} free models on OpenRouter")

        return free_models

    def _handle_streaming_response(self, response):
        """
        Handle streaming response from OpenRouter API.

        Args:
            response: Response object from requests.

        Returns:
            Combined text from streaming response.
        """
        result = ""

        for line in response.iter_lines():
            if line:
                line_text = line.decode('utf-8')

                # Remove the "data: " prefix
                if line_text.startswith("data: "):
                    line_text = line_text[6:]

                # Skip keep-alive lines
                if line_text.strip() == "[DONE]":
                    break

                try:
                    # Parse the JSON
                    json_data = json.loads(line_text)

                    # Extract the text
                    if "choices" in json_data and json_data["choices"]:
                        delta = json_data["choices"][0].get("delta", {})
                        if "content" in delta:
                            result += delta["content"]
                except json.JSONDecodeError:
                    pass

        return result

    def generate(
        self,
        prompt: str,
        temperature: float = 0.0,
        max_tokens: int = 1000,
        stream: bool = False
    ) -> str:
        """
        Generate text using OpenRouter API with a free model.

        Args:
            prompt: The prompt to send to the model.
            temperature: Controls randomness. Lower is more deterministic.
            max_tokens: Maximum number of tokens to generate.
            stream: Whether to stream the response.

        Returns:
            Generated text from the model.
        """
        # Ensure we have a model selected
        if not self.model:
            self.update_best_free_model()

        # If still no model, return error
        if not self.model:
            return "Error: No free models available on OpenRouter."

        try:
            headers = self._get_headers()

            # Use OpenAI-compatible format for the request
            payload = {
                "model": self.model,
                "messages": [
                    {"role": "user", "content": prompt}
                ],
                "temperature": temperature,
                "max_tokens": max_tokens,
                "stream": stream
            }

            response = requests.post(
                f"{self.base_url}/chat/completions",
                headers=headers,
                json=payload
            )
            
            if response.status_code == 200:
                if stream:
                    # Handle streaming response
                    return self._handle_streaming_response(response)
                else:
                    # Handle regular response
                    content = response.json(
                    )["choices"][0]["message"]["content"]
                    # Log model usage for tracking
                    usage = response.json().get("usage", {})
                    logger.info(
                        f"Used model {self.model} - Input: {usage.get('prompt_tokens', 0)}, Output: {usage.get('completion_tokens', 0)}")
                    return content
            else:
                error_info = f"Error {response.status_code}"
                try:
                    error_detail = response.json()
                    error_message = error_detail.get(
                        "error", {}).get("message", "Unknown error")
                    error_info = f"{error_info}: {error_message}"
                except:
                    error_info = f"{error_info}: {response.text}"

                logger.error(f"Error generating text: {error_info}")

                # Check for specific error cases
                if "rate limit" in error_info.lower():
                    return "Error: Rate limit exceeded for this free model. Please try again later or try a different model."

                # If there's an issue with the model, try to get a different one
                if "model" in error_info.lower() or "no endpoints" in error_info.lower():
                    prev_model = self.model
                    if self.update_best_free_model() and self.model != prev_model:
                        logger.info(
                            f"Retrying with different free model: {self.model}")
                        return self.generate(prompt, temperature, max_tokens, stream)

                return f"Error: Failed to generate response. {error_info}"

        except Exception as e:
            logger.error(f"Exception during text generation: {str(e)}")
            return f"Error: {str(e)}"


class OpenRouterFreeChain:
    """Chain for handling Q&A with OpenRouter free LLMs"""

    def __init__(self, adapter: OpenRouterFreeAdapter):
        """
        Initialize the OpenRouter free chain.

        Args:
            adapter: An initialized OpenRouterFreeAdapter.
        """
        self.adapter = adapter

    def create_prompt(self, query: str, context: List[str]) -> str:
        """
        Create a prompt for the LLM based on the query and context.

        Args:
            query: The user's question.
            context: List of document contents to provide as context.

        Returns:
            Formatted prompt string.
        """
        context_str = "\n\n".join(
            [f"Document {i+1}:\n{doc}" for i, doc in enumerate(context)])

        prompt = f"""You are an AI assistant answering questions based on the provided documents.

Context information:
{context_str}

Based on the above context, please answer the following question:
{query}

If the information to answer the question is not contained in the provided documents, respond with: "I don't have enough information in the provided documents to answer this question."

Answer:"""

        return prompt

    def run(self, query: str, context: List[str]) -> str:
        """
        Run the chain to get an answer.

        Args:
            query: The user's question.
            context: List of document contents to provide as context.

        Returns:
            Answer from the model.
        """
        prompt = self.create_prompt(query, context)
        return self.adapter.generate(prompt)


def get_best_free_model() -> str:
    """
    Get the best available free model from OpenRouter.

    Returns:
        Model ID string for the recommended free model.
    """
    adapter = OpenRouterFreeAdapter()
    adapter.update_best_free_model()
    return adapter.model