File size: 24,214 Bytes
65c21a7
b4c506d
 
4fbb557
b4c506d
 
bd6dcb9
4fbb557
 
b4c506d
4fbb557
 
bd6dcb9
06ee5d2
4fbb557
70806d8
4fbb557
b4c506d
 
 
 
06ee5d2
4fbb557
bd6dcb9
4fbb557
 
9c87bb7
b4c506d
06ee5d2
06fcbd6
bd6dcb9
b4c506d
a8aff52
988771a
a8aff52
 
06ee5d2
063480a
06ee5d2
3de98b2
 
b4c506d
bd6dcb9
91400d0
bd6dcb9
 
 
 
 
 
 
 
b4c506d
4fbb557
70806d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd6dcb9
988771a
 
 
bd6dcb9
 
 
 
 
 
 
3a7f10a
 
 
 
 
 
bd6dcb9
a8aff52
 
a39ac1b
a8aff52
 
 
3a7f10a
bd6dcb9
4fbb557
bd6dcb9
 
9a496e5
 
4fbb557
bd6dcb9
 
 
 
 
 
 
 
 
 
06ee5d2
bd6dcb9
 
 
 
a8aff52
bd6dcb9
 
3a7f10a
 
 
 
 
 
bd6dcb9
 
06ee5d2
bd6dcb9
06ee5d2
 
a8aff52
 
988771a
bd6dcb9
 
 
 
 
 
 
988771a
a8aff52
 
 
4fbb557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4c506d
 
 
 
 
 
 
 
063480a
 
b4c506d
3de98b2
 
 
 
 
 
 
063480a
b4c506d
 
 
 
 
063480a
b4c506d
 
 
 
 
063480a
 
b4c506d
 
 
 
 
 
 
 
 
 
bd6dcb9
 
3de98b2
bd6dcb9
3de98b2
bd6dcb9
 
a8aff52
1fa40b1
bd6dcb9
 
3de98b2
b4c506d
 
 
3de98b2
b4c506d
 
a8aff52
 
1fa40b1
063480a
a8aff52
 
b4c506d
 
3a7f10a
bd6dcb9
 
 
06ee5d2
bd6dcb9
06ee5d2
3a7f10a
bd6dcb9
b4c506d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fbb557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91400d0
4fbb557
bd6dcb9
4fbb557
 
91400d0
4fbb557
 
 
 
 
 
 
91400d0
b4c506d
4fbb557
3de98b2
4fbb557
 
 
 
bd6dcb9
4fbb557
 
 
a8aff52
4fbb557
 
 
a8aff52
4fbb557
 
bd6dcb9
 
 
 
 
3a7f10a
 
 
 
 
 
 
 
4fbb557
 
4d5787c
bd6dcb9
231073c
91400d0
 
231073c
b4c506d
70806d8
bd6dcb9
06ee5d2
9c87bb7
06ee5d2
87ea49e
06ee5d2
bd6dcb9
a33b08a
bd6dcb9
 
70806d8
bd6dcb9
 
3de98b2
 
3a7f10a
bd6dcb9
 
 
a8aff52
70806d8
bd6dcb9
06ee5d2
 
 
9c87bb7
87ea49e
06ee5d2
 
 
3de98b2
06ee5d2
 
 
 
3de98b2
a33b08a
06ee5d2
 
 
 
063480a
 
 
 
 
 
 
 
 
 
 
06ee5d2
 
 
 
70806d8
06ee5d2
 
3a7f10a
70806d8
06ee5d2
 
 
 
 
70806d8
06ee5d2
a8aff52
 
 
 
 
06ee5d2
4fbb557
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import json
import time
from itertools import count, islice
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Any, Callable, Iterable, Iterator, Optional, TypeVar

import gradio as gr
import ijson
import pandas as pd
import requests
from datasets import Dataset, Features, Value, Sequence
from datasets.fingerprint import Hasher
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import DatasetCard, InferenceClient

from utils import StringIteratorIO


model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
client = InferenceClient(model_id, token=os.environ.get("INFERENCE_API_HF_TOKEN"))

save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
session = requests.Session()
empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []})
loading_dataframe = pd.DataFrame({"Loading...": ["..."]})

NAMESPACE = "dataset-rewriter"
URL = "https://huggingface.co/spaces/dataset-rewriter/dataset-rewriter"

NUM_ROWS_PREVIEW = 3
PARTIAL_SUFFIX = {10: "-10", 100: "-100", 1000: "-1k", 10_000: "-10k", 100_000: "-100k", 1000_000: "-1M"}
MAX_NUM_ROWS_TO_REWRITE = int(os.environ.get("MAX_NUM_ROWS_TO_REWRITE") or 1000)
assert MAX_NUM_ROWS_TO_REWRITE in PARTIAL_SUFFIX, "allowed max num rows are 100, 1000, 10000, 100000 and 1000000"

NUM_PARALLEL_CALLS = 10
NUM_ROWS_PER_CALL = 3
MAX_PROGRESS_UPDATES_PER_SECOND = 4
MAX_STRING_LENGTH = 1000
REWRITE_DATASET = (
    "A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. "
    "They want you to rewrite the dataset and apply this instruction, which can be about transforming, translating or filtering the rows: {prompt}."
    "The first rows of the dataset are below in JSON format:\n\n{rows}\n\n"
    "Apply the instruction to those rows from the '{dataset}' dataset and output the resulting rows using the same JSON format. "
    "Try to keep some of the text or meaning intact, and apply the requested instruction '{prompt}'."
)
FIND_NEW_NAME = (
    "You are a helpful assistant specialized in transforming english sentences for machine learning practitioners."
    "Your job is to take input sentences like 'Take this dataset and apply the instruction xxx' and rephrase them them as 'The dataset should be yyy'. "
    "You shoud use adjectives and exactly follow the output formula 'The dataset should be yyy'. "
    "Here is your first job: rephrase the sentence 'Take this dataset and apply the instruction \"{prompt}\"'"
)


DATASET_CARD_CONTENT = """
---
license: mit
tags:
- dataset-rewriter
- synthetic
---

# {new_dataset}

_Note: This is an AI-generated dataset so its content may be inaccurate or false_

**Source of the data:**
The dataset was generated using the [Dataset ReWriter]({url}) and {model_id} from the dataset {dataset} and using the prompt '{prompt}':
- **Original Dataset**: https://huggingface.co/datasets/{dataset}
- **Model**: https://huggingface.co/{model_id}
- **More Datasets**: https://huggingface.co/datasets?other=dataset-rewriter
"""

css = """
a {
    color: var(--body-text-color);
}
.settings {
    background: transparent;
}
.settings button span {
    color: var(--body-text-color-subdued);
}
"""
js = """
function load() {
    Array.from(document.getElementsByClassName("secondary")).filter(e => (e.innerText.includes("New row")))[0].innerText = "New column"
    return 'done';
}
"""

examples = [
    ["fka/awesome-chatgpt-prompts", "make the prompt 6 words long maximum"],
    ["lhoestq/CudyPokemonAdventures", "make Pikachu the main character"],
    ["infinite-dataset-hub/SmallTalkDialogues", "translate to proper French"],
]

with gr.Blocks(css=css, js=js) as demo:
    dataset_info_json = gr.JSON(visible=False)
    with gr.Row():
        with gr.Column(scale=10):
            gr.Markdown(
                "# 🤗 Dataset ReWriter ✍️✨\n\n"
                "Adjust, translate or transform datasets with a text instruction.\n\n"
            )
            with gr.Row():
                with gr.Column(scale=3):
                    dataset_search =  HuggingfaceHubSearch(
                        label="Hub Dataset ID",
                        placeholder="Search for dataset id on Huggingface",
                        search_type="dataset",
                    )
                subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
                split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)

            gr.Markdown("### Sample")
            pretty_input_preview = gr.DataFrame(interactive=False)

            gr.Markdown("### ReWrite")
            with gr.Group():
                input_prompt = gr.Textbox(label="Adjustment or transformation to apply to the dataset")
                with gr.Accordion("(Advanced) Edit columns", open=False):
                    output_format_dataframe = gr.DataFrame(col_count=(2, "fixed"), headers=["column", "type"])
                    column_ro_remove_dropdown = gr.Dropdown(info="Select a column to remove", show_label=False)
                    with gr.Row():
                        with gr.Column(scale=99):
                            pass
                        with gr.Column(scale=1, min_width=88):
                            remove_column_button = gr.Button("Remove", size="sm", elem_id="remove_column_button")
            rewrite_preview_button = gr.Button("Preview Results", variant="primary")
            rewrite_full_dataset_button = gr.Button("ReWrite Full Dataset", interactive=False)
            gr.Markdown("#### Output")
            full_dataset_generation_label = gr.Label(visible=False, show_label=False)
            pretty_output_preview = gr.DataFrame(interactive=False)
            pretty_full_dataset_generation_output = gr.DataFrame(interactive=False, visible=False)
            full_dataset_generation_success_html = gr.HTML()
            gr.Examples(examples, inputs=[dataset_search, input_prompt])
            gr.Markdown(f"_powered by [{model_id}](https://huggingface.co/{model_id})_")
        with gr.Column(scale=4, min_width="200px"):
            with gr.Accordion("Settings", open=False, elem_classes="settings"):
                gr.Markdown("Save datasets to your account")
                gr.LoginButton()
                select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
                gr.Markdown("Save datasets as public or private datasets")
                visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
                gr.Markdown("Maximum number of rows to ReWrite")
                max_num_rows_dropdown = gr.Dropdown(choices=[num_rows for num_rows in PARTIAL_SUFFIX if num_rows <= MAX_NUM_ROWS_TO_REWRITE], value=MAX_NUM_ROWS_TO_REWRITE, container=False)
                gr.Markdown("Duplicate this space to ReWrite more rows")
                gr.HTML(f'<a href="{URL}?duplicate=true" target="_blank"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space"></a>')


    ############
    #
    #  Utils
    #
    ###########


    def stream_rows(dataset: str, subset: str, split: str, batch_size: int = 100) -> Iterable[dict[str, Any]]:
        for i in count():
            rows_resp = session.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={subset}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=10).json()
            if "error" in rows_resp:
                raise RuntimeError(rows_resp["error"])
            if not rows_resp["rows"]:
                break
            for row_item in rows_resp["rows"]:
                yield row_item["row"]


    T = TypeVar("T")


    def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
        it = iter(it)
        while batch := list(islice(it, n)):
            yield batch

    class ContextTooLongError(ValueError):
        pass

    def crop_text(obj: Any) -> str:
        if isinstance(obj, str):
            return obj[:MAX_STRING_LENGTH]
        else:
            raise TypeError()


    def stream_reponse(messages: list[dict[str: str]], response_format=None, max_tokens=5000) -> Iterator[str]:
        for _ in range(3):
            message = None
            try:
                for message in client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    stream=True,
                    top_p=0.8,
                    seed=42,
                    response_format=response_format
                ):
                    if message is None or not message.choices or message.choices[0] is None or message.choices[0].delta is None or message.choices[0].delta.content is None:
                        raise ContextTooLongError(f"messages: {sum(len(message['content']) for message in messages)} chars, max_tokens: {max_tokens}")
                    yield message.choices[0].delta.content
            except requests.exceptions.ConnectionError as e:
                if message:
                    raise
                print(e + "\n\nRetrying in 1sec")
                time.sleep(1)
                continue
            break


    def stream_rewrite_dataset_preview_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]:
        prompt = prompt[:1000] if prompt.strip() else ""
        messages = [{"role": "user", "content": REWRITE_DATASET.format(
            dataset=dataset,
            rows=json.dumps({"data": rows}, ensure_ascii=False, default=crop_text),
            prompt=prompt,
        )}]
        response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format, "minItems": len(rows), "maxItems": len(rows)}}, "required": ["data"]}}
        yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4, use_float=True)


    def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]:
        prompt = prompt[:1000] if prompt.strip() else ""
        messages = [{"role": "user", "content": REWRITE_DATASET.format(
            dataset=dataset,
            rows=json.dumps({"data": rows}, ensure_ascii=False, default=crop_text),
            prompt=prompt,
        )}]
        response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format, "minItems": len(rows), "maxItems": len(rows)}}, "required": ["data"]}}
        try:
            yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4, use_float=True)
        except (ijson.IncompleteJSONError) as e:
            print(f"{type(e).__name__}: {e}")
            print("Warning: Some rows were missing during ReWriting.")


    def find_new_name(dataset: str, prompt: str, format: dict) -> str:
        messages = [{"role": "user", "content": FIND_NEW_NAME.format(prompt=prompt)}]
        out = "".join(stream_reponse(messages))
        if "should be" in out:
            out = dataset.split("/")[-1] + out.split("should be", 1)[1].replace(" ", "-").replace(".", "").replace(",", "")
        else:
            out = dataset.split("/")[-1] + prompt.replace(" ", "-")
        return out[:80] + "-" + Hasher.hash(prompt + str(format))[:4]

    def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
        for i, result in enumerate(func(**kwargs)):
            queue.put(result)
        return None


    def iflatmap_unordered(
        func: Callable[..., Iterable[T]],
        *,
        kwargs_iterable: Iterable[dict],
    ) -> Iterable[T]:
        queue = Queue()
        with ThreadPool() as pool:
            async_results = [pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable]
            try:
                while True:
                    try:
                        yield queue.get(timeout=0.05)
                    except Empty:
                        if all(async_result.ready() for async_result in async_results) and queue.empty():
                            break
            finally:  # in case there's an error to raise
                [async_result.get(timeout=0.05) for async_result in async_results]


    def features_to_format(features: Features) -> dict:
        def feature_to_format(feature):
            if isinstance(feature, Value):
                if "int" in feature.dtype:
                    return {"type": "integer"} 
                elif "float" in feature.dtype:
                    return {"type": "number"}
                else:
                    return {"type": "string"}
            elif isinstance(feature, list):
                return {"type": "array", "items": feature_to_format(feature[0])}
            elif isinstance(feature, dict):
                return {"properties": {k: feature_to_format(v) for k, v in feature.items()}, "required": list(feature)}
            elif isinstance(feature, Sequence):
                if isinstance(feature.feature, dict):
                    return {"properties": {k: {"type": "array", "items": v } for k, v in feature_to_format(feature.feature).items()}, "required": list(feature)}
                else:
                    return {"type": "array", "items": feature_to_format(feature.feature)}
            else:
                return {"type": "string"}
        return feature_to_format(features)


    ############
    #
    #  Events
    #
    ###########

    def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str) -> dict:
        if "/" not in dataset.strip().strip("/"):
            return None, None, {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
            }
        info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
        if "error" in info_resp:
            return None, None, {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
            }
        subsets: list[str] = list(info_resp["dataset_info"])
        subset = default_subset if default_subset in subsets else subsets[0]
        splits: list[str] = info_resp["dataset_info"][subset]["splits"]
        split = default_split if default_split in splits else splits[0]
        dict_format = features_to_format(Features.from_dict(info_resp["dataset_info"][subset]["features"]))
        return subset, split, {
            dataset_info_json: info_resp["dataset_info"][subset],
            subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
            split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
            output_format_dataframe: pd.DataFrame([{"column": col, "type": json.dumps(format_type)} for col, format_type in dict_format["properties"].items()])
        }


    def _show_input_preview(dataset: str, default_subset: str, default_split: str) -> dict:
        subset, split, output = _resolve_dataset_selection(dataset, default_subset=default_subset, default_split=default_split)
        if subset is None or split is None:
            return output
        print(f"Showing {dataset}")
        rows = list(islice((stream_rows(dataset, subset, split, batch_size=NUM_ROWS_PREVIEW)), NUM_ROWS_PREVIEW))
        return {
            pretty_input_preview: gr.DataFrame(pd.DataFrame([{k: json.dumps(v, ensure_ascii=False, default=crop_text) for k, v in row.items()} for row in rows])),
            **output
        }


    @dataset_search.change(inputs=[dataset_search], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
    def show_input_from_dataset_search(dataset: str) -> dict:
        return _show_input_preview(dataset, default_subset="default", default_split="train")

    @subset_dropdown.select(inputs=[dataset_search, subset_dropdown], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
    def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
        return _show_input_preview(dataset, default_subset=subset, default_split="train")

    @split_dropdown.select(inputs=[dataset_search, subset_dropdown, split_dropdown], outputs=[pretty_input_preview, subset_dropdown, split_dropdown, output_format_dataframe, dataset_info_json])
    def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
        return _show_input_preview(dataset, default_subset=subset, default_split=split)
    

    @input_prompt.change(outputs=[rewrite_full_dataset_button])
    def disable_rewrite_full_dataset() -> dict:
        return {rewrite_full_dataset_button: gr.Button(interactive=False)}
    
    @output_format_dataframe.change(inputs=[output_format_dataframe], outputs=[column_ro_remove_dropdown])
    def update_columns_to_remove_dropdown(output_format_df: pd.DataFrame) -> dict:
        return gr.Dropdown(choices=output_format_df["column"].tolist())
    
    @remove_column_button.click(inputs=[column_ro_remove_dropdown, output_format_dataframe], outputs=[output_format_dataframe])
    def update_output_format_dataframe(column: str, output_format_df: pd.DataFrame) -> pd.DataFrame:
        return output_format_df[output_format_df["column"] != column]


    @rewrite_preview_button.click(inputs=[dataset_search, pretty_input_preview, input_prompt, output_format_dataframe], outputs=[pretty_output_preview, rewrite_full_dataset_button, full_dataset_generation_label, full_dataset_generation_success_html, pretty_full_dataset_generation_output])
    def rewrite_preview(dataset: str, pretty_input_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame) -> Iterator[pd.DataFrame]:
        output_format_df = output_format_df[output_format_df["column"] != ""]
        format = output_format_df.to_dict(orient="records")
        format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
        rows = [{k: json.loads(row[k]) for k in output_format_df["column"] if k in row} for row in pretty_input_preview_df.to_dict(orient="records")]
        output_rows = []
        print(f"(preview) ReWriting {dataset} with instruction '{prompt}'")
        yield {rewrite_full_dataset_button: gr.Button(interactive=False), full_dataset_generation_label: gr.Label(visible=False)}
        yield {
            pretty_output_preview: gr.DataFrame(loading_dataframe, visible=True),
            pretty_full_dataset_generation_output: gr.DataFrame(visible=False),
            full_dataset_generation_success_html: "",
        }
        for row in stream_rewrite_dataset_preview_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=format):
            output_rows.append({k: json.dumps(row[k], ensure_ascii=False) for k in output_format_df["column"]})
            yield {pretty_output_preview: gr.DataFrame(pd.DataFrame(output_rows))}
        yield {rewrite_full_dataset_button: gr.Button(interactive=True)}
        print(f"(preview) Done ReWriting {dataset} with instruction '{prompt}'")


    @rewrite_full_dataset_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, input_prompt, output_format_dataframe, dataset_info_json, select_namespace_dropdown, max_num_rows_dropdown], outputs=[full_dataset_generation_label, full_dataset_generation_success_html, pretty_output_preview, pretty_full_dataset_generation_output])
    def rewrite_full_dataset(dataset: str, subset: str, split: str, prompt: str, output_format_df: pd.DataFrame, dataset_info: dict[str, Any], namespace: str, max_num_rows: int, oauth_token: Optional[gr.OAuthToken]) -> Iterator[pd.DataFrame]:
        output_format_df = output_format_df[output_format_df["column"] != ""]
        format = output_format_df.to_dict(orient="records")
        format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
        num_examples = dataset_info["splits"][split]["num_examples"]
        total = min(num_examples, max_num_rows)
        print(f"ReWriting {dataset} with instruction '{prompt}'")
        yield {full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": 0.}, visible=True)}
        yield {pretty_full_dataset_generation_output: empty_dataframe}
        yield {
            pretty_output_preview: gr.DataFrame(visible=False),
            pretty_full_dataset_generation_output: gr.DataFrame(loading_dataframe, visible=True),
            full_dataset_generation_success_html: "",
        }

        num_parallel_calls = max(1, min(total // NUM_ROWS_PER_CALL, NUM_PARALLEL_CALLS))
        parallel_input_rows = list(batched(islice(({k: row[k] for k in output_format_df["column"] if k in row} for row in stream_rows(dataset=dataset, subset=subset, split=split)), total), n=total // num_parallel_calls))
        parallel_output_rows = [[] for _ in range(num_parallel_calls)]

        def run(i):
            for batch_rows in batched(parallel_input_rows[i], n=NUM_ROWS_PER_CALL):
                for row in stream_rewrite_dataset_row_by_row(dataset=dataset, rows=batch_rows, prompt=prompt, format=format):
                    parallel_output_rows[i].append({k: json.dumps(row[k], ensure_ascii=False) for k in output_format_df["column"]})
                    yield 1

        current = 0
        _last_time = time.time()
        try:
            for step in iflatmap_unordered(run, kwargs_iterable=[{"i": i} for i in range(num_parallel_calls)]):
                current += step
                if _last_time + 1 / MAX_PROGRESS_UPDATES_PER_SECOND < time.time():
                    _last_time = time.time()
                    yield {
                        full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
                        pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
                    }
        except ContextTooLongError:
            raise gr.Error("Input dataset has too long context for the model")
        yield {
            full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
            pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
        }
        print(f"Done ReWriting {dataset} with instruction '{prompt}'")

        output_rows = [{k: json.loads(row[k]) for k in output_format_df["column"]} for rows in parallel_output_rows for row in rows]
        new_dataset = find_new_name(dataset + (PARTIAL_SUFFIX[max_num_rows] if num_examples > total else ""), prompt, format)
        repo_id = namespace + "/" + new_dataset
        yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"⚙️ Saving to {repo_id}": 0.})}
        token = oauth_token.token if oauth_token else save_dataset_hf_token
        print(f"Saving {repo_id}")
        ds = Dataset.from_list(output_rows)
        ds.push_to_hub(repo_id, config_name=subset, split=split, token=token)
        DatasetCard(DATASET_CARD_CONTENT.format(new_dataset=new_dataset, dataset=dataset, model_id=model_id, prompt=prompt, url=URL)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
        yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"✅ Saving to {repo_id}": 1.})}
        yield {full_dataset_generation_success_html: (
            f'<a href="https://huggingface.co/datasets/{repo_id}" target="_blank">'
            '<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-xl.svg" alt="Dataset on HF", style="margin-right: auto; margin-left: auto; max-width: fit-content;">'
            '</a>'
        )}
        print(f"Saved {repo_id}")


demo.launch()