File size: 13,654 Bytes
0994464
85c4fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e71274
 
85c4fe0
 
 
 
d2c6fd5
0994464
 
c4968c3
0994464
 
 
 
 
 
 
c4968c3
 
 
 
 
85c4fe0
ed9ad5e
8e71274
918a154
85c4fe0
 
 
 
 
 
 
 
 
 
 
8e71274
85c4fe0
 
 
 
 
 
 
 
 
 
 
8e71274
85c4fe0
8e71274
85c4fe0
918a154
 
 
 
0994464
85c4fe0
 
 
8e71274
918a154
85c4fe0
 
 
ed9ad5e
85c4fe0
 
 
 
 
 
 
 
8e71274
85c4fe0
8e71274
85c4fe0
 
 
 
 
 
8e71274
85c4fe0
 
 
 
 
 
 
 
 
 
918a154
85c4fe0
 
 
 
 
 
8e71274
 
 
 
 
85c4fe0
8e71274
85c4fe0
 
 
8e71274
ed9ad5e
85c4fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed9ad5e
85c4fe0
 
 
 
918a154
85c4fe0
 
 
 
 
 
 
ed9ad5e
918a154
85c4fe0
 
8e71274
 
85c4fe0
918a154
8e71274
85c4fe0
 
 
 
 
 
 
8e71274
85c4fe0
8e71274
 
 
 
 
85c4fe0
918a154
85c4fe0
8e71274
 
 
 
 
 
85c4fe0
 
 
 
 
 
 
 
 
ed9ad5e
85c4fe0
 
 
8e71274
 
85c4fe0
 
918a154
85c4fe0
918a154
ed9ad5e
918a154
 
85c4fe0
 
 
 
 
 
ed9ad5e
85c4fe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gdown
import datetime
import openai
import uuid
import gradio as gr
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import RetrievalQA

import os
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader

from collections import deque
import re
from bs4 import BeautifulSoup
import requests
from urllib.parse import urlparse
import mimetypes
from pathlib import Path
import tiktoken
from ttyd_functions import *
from ttyd_consts import *

###############################################################################################


# select the mode at runtime when starting container - modes options are in ttyd_consts.py

if (os.getenv("TTYD_MODE")).split('_')[0]=='personalBot':
    mode = mode_arslan
    gDriveUrl = os.getenv("GDRIVE_FOLDER_URL")
    # output folder of googe drive folder will be taken as input dir of personalBot
    gdown.download_folder(url=gDriveUrl, output=mode.inputDir, quiet=True)
    if os.getenv("TTYD_MODE")!='personalBot_arslan':
        mode.title=''
        mode.welcomeMsg=''

elif os.getenv("TTYD_MODE")=='nustian':
    mode = mode_nustian
else:
    mode = mode_general


if mode.type!='userInputDocs':
    # local vector store as opposed to gradio state vector store
    vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list)

###############################################################################################

                                    # Gradio

###############################################################################################

def generateExamples(api_key_st, vsDict_st):
    qa_chain = RetrievalQA.from_llm(llm=ChatOpenAI(openai_api_key=api_key_st, temperature=0), 
                    retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": 4}))

    result = qa_chain({'query': exp_query})
    answer = result['result'].strip('\n')
    grSamples = [[]]
    if answer.startswith('1. '):
        lines = answer.split("\n")  # split the answers into individual lines
        list_items = [line.split(". ")[1] for line in lines]  # extract each answer after the numbering
        grSamples = [[x] for x in list_items] # gr takes list of each item as a list

    return grSamples

# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated.
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()):
    progress(0.1, waitText_initialize)
    qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st)
    progress(0.5, waitText_initialize)
    #generate welcome message
    if mode.welcomeMsg:
        welMsg = mode.welcomeMsg
    else:
        welMsg = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})['answer']
    print('Chatbot initialized at ', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    # exSamples = generateExamples(api_key_st, vsDict_st)
    # exSamples_vis = True if exSamples[0] else False

    return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\
        , aKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)])


def setApiKey(api_key):
    api_key = transformApi(api_key)
    try:
        openai.Model.list(api_key=api_key) # test the API key
        api_key_st = api_key
        return aKey_tb.update('API Key accepted', interactive=False, type='text'), aKey_btn.update(interactive=False), api_key_st
    except Exception as e:
        return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]]
    
# convert user uploaded data to vectorstore
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()):
    opComponents = [data_ingest_btn, upload_fb, urls_tb]
    # parse user data
    file_paths = []
    documents = []
    if userFiles is not None:
        if not isinstance(userFiles, list): userFiles = [userFiles]
        file_paths = [file.name for file in userFiles]
    userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else []
    #create documents
    documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress)
    if documents:
        for file in file_paths:
            os.remove(file)
    else:
        return {}, '', *[x.update() for x in opComponents]
    # Splitting and Chunks
    docs = split_docs(documents)
    # Embeddings
    try:
        api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st
        openai.Model.list(api_key=api_key_st) # test the API key
        embeddings = OpenAIEmbeddings(openai_api_key=api_key_st)
    except Exception as e:
        return {}, str(e), *[x.update() for x in opComponents]
    
    progress(0.5, 'Creating Vector Database')
    vsDict_st = getVsDict(embeddings, docs, vsDict_st)
    # get sources from metadata
    src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas'])
    src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
    
    progress(1, 'Data loaded')
    return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='')

# just update the QA Chain, no updates to any UI
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st):
    # if we are not adding data from ui, then use vsDict_hard as vectorstore
    if vsDict_st=={} and mode.type!='userInputDocs': vsDict_st=vsDict_hard
    modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets
    # check if the input model is chat model or legacy model
    try:
        ChatOpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
        llm = ChatOpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
    except:
        OpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
        llm = OpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
    # settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k)
    # gr.Info(settingsUpdated)
    
    # Now create QA Chain using the LLM
    if stdlQs==0: # 0th index i.e. first option
        qa_chain_st = RetrievalQA.from_llm(
                    llm=llm, 
                    retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
                    return_source_documents=True,
                    input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions
                )
    else:
        rephQs = False if stdlQs==1 else True
        qa_chain_st = ConversationalRetrievalChain.from_llm(
                    llm=llm, 
                    retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
                    rephrase_question=rephQs,
                    return_source_documents=True,
                    return_generated_question=True
                )
    
    return qa_chain_st
        

def respond(message, chat_history, qa_chain):
    result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]})
    src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0]
    # streaming
    streaming_answer = ""
    for ele in "".join(result['answer']):
        streaming_answer += ele
        yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False)
    
    chat_history.extend([(message, result['answer'])])
    yield "", chat_history, src_docs, btn.update('Send Message', interactive=True)

#####################################################################################################

with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo:

    # Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component
    # but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue'
    qa_state = gr.State()
    api_key_state = gr.State(os.getenv("OPENAI_API_KEY") if mode.type=='personalBot' else 'Null')
    chromaVS_state = gr.State({})


    # Setup the Gradio Layout
    gr.Markdown(mode.title)
    with gr.Tabs() as tabs:
        with gr.Tab('Initialization', id='init'):
            with gr.Row():
                with gr.Column():
                    aKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\
                            , info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\
                            , placeholder='Enter your API key here and hit enter to begin chatting')
                    aKey_btn = gr.Button("Submit API Key")
            with gr.Row(visible=mode.uiAddDataVis):
                upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv'])
                urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\
                                    , info=url_tb_info\
                                    , placeholder=url_tb_ph)
                data_ingest_btn = gr.Button("Load Data")
            status_tb = gr.TextArea(label='Status bar', show_label=False, visible=mode.uiAddDataVis)
            initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary")

        with gr.Tab('Chatbot', id='cb'):
            with gr.Row():
                chatbot = gr.Chatbot(label="Chat History", scale=2)
                srcDocs = gr.TextArea(label="References")
            msg = gr.Textbox(label="User Input",placeholder="Type your questions here")
            with gr.Row():
                btn = gr.Button("Send Message", interactive=False, variant="primary")
                clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history")
            # exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False)
            # gr.Examples(examples=exps,  inputs=msg)
            with gr.Accordion("Advance Settings - click to expand", open=False):
                with gr.Row():
                    with gr.Column():
                        temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7')
                        k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4')
                        model_dd = gr.Dropdown(label='Model Name'\
                                , choices=model_dd_choices\
                                , value=model_dd_choices[0], allow_custom_value=True\
                                , info=model_dd_info)
                    stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\
                            , type='index', value=stdlQs_rb_choices[1]\
                            , choices=stdlQs_rb_choices)
                   
    ### Setup the Gradio Event Listeners

    # API button
    aKey_btn_args = {'fn':setApiKey, 'inputs':[aKey_tb], 'outputs':[aKey_tb, aKey_btn, api_key_state]}
    aKey_btn.click(**aKey_btn_args)
    aKey_tb.submit(**aKey_btn_args)

    # Data Ingest Button
    data_ingest_event = data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb])

    # Adv Settings
    advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]}
    temp_sld.release(**advSet_args)
    k_sld.release(**advSet_args)
    model_dd.change(**advSet_args)
    stdlQs_rb.change(**advSet_args)

    # Initialize button
    initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, btn, initChatbot_btn, aKey_tb, tabs, chatbot]}
    if mode.type=='personalBot':
        demo.load(**initCb_args) # load Chatbot UI directly on startup
    initChatbot_btn.click(**initCb_args)

    # Chatbot submit button
    chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot,  qa_state], 'outputs':[msg, chatbot, srcDocs, btn]}
    btn.click(**chat_btn_args)
    msg.submit(**chat_btn_args)

demo.queue(concurrency_count=10)
demo.launch(show_error=True)