File size: 35,735 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import abc
import math
from functools import partial
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from .quadrature import _precompute_grid, _precompute_latitudes

if torch.cuda.is_available():
    from ._disco_convolution import (
        _disco_s2_contraction_triton,
        _disco_s2_transpose_contraction_triton,
    )


def _compute_support_vals_isotropic(
    r: torch.Tensor, phi: torch.Tensor, nr: int, r_cutoff: float, norm: str = "s2"
):
    """
    Computes the index set that falls into the isotropic kernel's support and returns both indices and values.
    """

    # compute the support
    dr = (r_cutoff - 0.0) / nr
    ikernel = torch.arange(nr).reshape(-1, 1, 1)
    ir = ikernel * dr

    if norm == "none":
        norm_factor = 1.0
    elif norm == "2d":
        norm_factor = (
            math.pi * (r_cutoff * nr / (nr + 1)) ** 2
            + math.pi * r_cutoff**2 * (2 * nr / (nr + 1) + 1) / (nr + 1) / 3
        )
    elif norm == "s2":
        norm_factor = (
            2
            * math.pi
            * (
                1
                - math.cos(r_cutoff - dr)
                + math.cos(r_cutoff - dr)
                + (math.sin(r_cutoff - dr) - math.sin(r_cutoff)) / dr
            )
        )
    else:
        raise ValueError(f"Unknown normalization mode {norm}.")

    # find the indices where the rotated position falls into the support of the kernel
    iidx = torch.argwhere(((r - ir).abs() <= dr) & (r <= r_cutoff))
    vals = (
        1 - (r[iidx[:, 1], iidx[:, 2]] - ir[iidx[:, 0], 0, 0]).abs() / dr
    ) / norm_factor
    return iidx, vals


def _compute_support_vals_anisotropic(
    r: torch.Tensor,
    phi: torch.Tensor,
    nr: int,
    nphi: int,
    r_cutoff: float,
    norm: str = "s2",
):
    """
    Computes the index set that falls into the anisotropic kernel's support and returns both indices and values.
    """

    # compute the support
    dr = (r_cutoff - 0.0) / nr
    dphi = 2.0 * math.pi / nphi
    kernel_size = (nr - 1) * nphi + 1
    ikernel = torch.arange(kernel_size).reshape(-1, 1, 1)
    ir = ((ikernel - 1) // nphi + 1) * dr
    iphi = ((ikernel - 1) % nphi) * dphi

    if norm == "none":
        norm_factor = 1.0
    elif norm == "2d":
        norm_factor = (
            math.pi * (r_cutoff * nr / (nr + 1)) ** 2
            + math.pi * r_cutoff**2 * (2 * nr / (nr + 1) + 1) / (nr + 1) / 3
        )
    elif norm == "s2":
        norm_factor = (
            2
            * math.pi
            * (
                1
                - math.cos(r_cutoff - dr)
                + math.cos(r_cutoff - dr)
                + (math.sin(r_cutoff - dr) - math.sin(r_cutoff)) / dr
            )
        )
    else:
        raise ValueError(f"Unknown normalization mode {norm}.")

    # find the indices where the rotated position falls into the support of the kernel
    cond_r = ((r - ir).abs() <= dr) & (r <= r_cutoff)
    cond_phi = (
        (ikernel == 0)
        | ((phi - iphi).abs() <= dphi)
        | ((2 * math.pi - (phi - iphi).abs()) <= dphi)
    )
    iidx = torch.argwhere(cond_r & cond_phi)
    vals = (
        1 - (r[iidx[:, 1], iidx[:, 2]] - ir[iidx[:, 0], 0, 0]).abs() / dr
    ) / norm_factor
    vals *= torch.where(
        iidx[:, 0] > 0,
        (
            1
            - torch.minimum(
                (phi[iidx[:, 1], iidx[:, 2]] - iphi[iidx[:, 0], 0, 0]).abs(),
                (
                    2 * math.pi
                    - (phi[iidx[:, 1], iidx[:, 2]] - iphi[iidx[:, 0], 0, 0]).abs()
                ),
            )
            / dphi
        ),
        1.0,
    )
    return iidx, vals


def _precompute_convolution_tensor_s2(
    in_shape,
    out_shape,
    kernel_shape,
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
):
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
        {\begin{bmatrix}
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

    if len(kernel_shape) == 1:
        kernel_handle = partial(
            _compute_support_vals_isotropic,
            nr=kernel_shape[0],
            r_cutoff=theta_cutoff,
            norm="s2",
        )
    elif len(kernel_shape) == 2:
        kernel_handle = partial(
            _compute_support_vals_anisotropic,
            nr=kernel_shape[0],
            nphi=kernel_shape[1],
            r_cutoff=theta_cutoff,
            norm="s2",
        )
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

    lats_in, _ = _precompute_latitudes(nlat_in, grid=grid_in)
    lats_in = torch.from_numpy(lats_in).float()
    lats_out, _ = _precompute_latitudes(nlat_out, grid=grid_out)
    lats_out = torch.from_numpy(lats_out).float()

    # array for accumulating non-zero indices
    out_idx = torch.empty([3, 0], dtype=torch.long)
    out_vals = torch.empty([0], dtype=torch.long)

    # compute the phi differences
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]

    for t in range(nlat_out):
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
        alpha = -lats_out[t]
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)

        # compute cartesian coordinates of the rotated position
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(
            alpha
        ) * torch.cos(gamma)
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(
            gamma
        ) * torch.sin(alpha)
        y = torch.sin(beta) * torch.sin(gamma)

        # normalization is emportant to avoid NaNs when arccos and atan are applied
        # this can otherwise lead to spurious artifacts in the solution
        norm = torch.sqrt(x * x + y * y + z * z)
        x = x / norm
        y = y / norm
        z = z / norm

        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
        theta = torch.arccos(z)
        phi = torch.arctan2(y, x) + torch.pi

        # find the indices where the rotated position falls into the support of the kernel
        iidx, vals = kernel_handle(theta, phi)

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack(
            [
                iidx[:, 0],
                t * torch.ones_like(iidx[:, 0]),
                iidx[:, 1] * nlon_in + iidx[:, 2],
            ],
            dim=0,
        )

        # append indices and values to the COO datastructure
        out_idx = torch.cat([out_idx, idx], dim=-1)
        out_vals = torch.cat([out_vals, vals], dim=-1)

    return out_idx, out_vals


def _precompute_convolution_tensor_2d(
    grid_in, grid_out, kernel_shape, radius_cutoff=0.01, periodic=False
):
    """
    Precomputes the translated filters at positions $T^{-1}_j \omega_i = T^{-1}_j T_i \nu$. Similar to the S2 routine,
    only that it assumes a non-periodic subset of the euclidean plane
    """

    # check that input arrays are valid point clouds in 2D
    assert len(grid_in) == 2
    assert len(grid_out) == 2
    assert grid_in.shape[0] == 2
    assert grid_out.shape[0] == 2

    n_in = grid_in.shape[-1]
    n_out = grid_out.shape[-1]

    if len(kernel_shape) == 1:
        kernel_handle = partial(
            _compute_support_vals_isotropic,
            nr=kernel_shape[0],
            r_cutoff=radius_cutoff,
            norm="2d",
        )
    elif len(kernel_shape) == 2:
        kernel_handle = partial(
            _compute_support_vals_anisotropic,
            nr=kernel_shape[0],
            nphi=kernel_shape[1],
            r_cutoff=radius_cutoff,
            norm="2d",
        )
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    grid_in = grid_in.reshape(2, 1, n_in)
    grid_out = grid_out.reshape(2, n_out, 1)

    diffs = grid_in - grid_out
    if periodic:
        periodic_diffs = torch.where(diffs > 0.0, diffs - 1, diffs + 1)
        diffs = torch.where(diffs.abs() < periodic_diffs.abs(), diffs, periodic_diffs)

    r = torch.sqrt(diffs[0] ** 2 + diffs[1] ** 2)
    phi = torch.arctan2(diffs[1], diffs[0]) + torch.pi

    idx, vals = kernel_handle(r, phi)
    idx = idx.permute(1, 0)

    return idx, vals


class DiscreteContinuousConv(nn.Module, abc.ABC):
    """
    Abstract base class for DISCO convolutions
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        bias: Optional[bool] = True,
    ):
        super().__init__()

        if isinstance(kernel_shape, int):
            self.kernel_shape = [kernel_shape]
        else:
            self.kernel_shape = kernel_shape

        if len(self.kernel_shape) == 1:
            self.kernel_size = self.kernel_shape[0]
        elif len(self.kernel_shape) == 2:
            self.kernel_size = (self.kernel_shape[0] - 1) * self.kernel_shape[1] + 1
        else:
            raise ValueError("kernel_shape should be either one- or two-dimensional.")

        # groups
        self.groups = groups

        # weight tensor
        if in_channels % self.groups != 0:
            raise ValueError(
                "Error, the number of input channels has to be an integer multiple of the group size"
            )
        if out_channels % self.groups != 0:
            raise ValueError(
                "Error, the number of output channels has to be an integer multiple of the group size"
            )
        self.groupsize = in_channels // self.groups
        scale = math.sqrt(1.0 / self.groupsize)
        self.weight = nn.Parameter(
            scale * torch.randn(out_channels, self.groupsize, self.kernel_size)
        )

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None

    @abc.abstractmethod
    def forward(self, x: torch.Tensor):
        raise NotImplementedError


def _disco_s2_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
    on GPU, make sure to use the custom kernel written in Triton.
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 4
    psi = psi.to(x.device)

    batch_size, n_chans, nlat_in, nlon_in = x.shape
    kernel_size, nlat_out, _ = psi.shape

    assert psi.shape[-1] == nlat_in * nlon_in
    assert nlon_in % nlon_out == 0
    assert nlon_in >= nlat_out
    pscale = nlon_in // nlon_out

    # add a dummy dimension for nkernel and move the batch and channel dims to the end
    x = x.reshape(1, batch_size * n_chans, nlat_in, nlon_in).permute(0, 2, 3, 1)
    x = x.expand(kernel_size, -1, -1, -1)

    y = torch.zeros(
        nlon_out,
        kernel_size,
        nlat_out,
        batch_size * n_chans,
        device=x.device,
        dtype=x.dtype,
    )

    for pout in range(nlon_out):
        # sparse contraction with psi
        y[pout] = torch.bmm(psi, x.reshape(kernel_size, nlat_in * nlon_in, -1))
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        x = torch.roll(x, -pscale, dims=2)

    # reshape y back to expose the correct dimensions
    y = y.permute(3, 1, 2, 0).reshape(
        batch_size, n_chans, kernel_size, nlat_out, nlon_out
    )

    return y


def _disco_s2_transpose_contraction_torch(
    x: torch.Tensor, psi: torch.Tensor, nlon_out: int
):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
    on GPU, make sure to use the custom kernel written in Triton.
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 5
    psi = psi.to(x.device)

    batch_size, n_chans, kernel_size, nlat_in, nlon_in = x.shape
    kernel_size, _, n_out = psi.shape

    assert psi.shape[-2] == nlat_in
    assert n_out % nlon_out == 0
    nlat_out = n_out // nlon_out
    assert nlon_out >= nlat_in
    pscale = nlon_out // nlon_in

    # we do a semi-transposition to faciliate the computation
    inz = psi.indices()
    tout = inz[2] // nlon_out
    pout = inz[2] % nlon_out
    # flip the axis of longitudes
    pout = nlon_out - 1 - pout
    tin = inz[1]
    inz = torch.stack([inz[0], tout, tin * nlon_out + pout], dim=0)
    psi_mod = torch.sparse_coo_tensor(
        inz, psi.values(), size=(kernel_size, nlat_out, nlat_in * nlon_out)
    )

    # interleave zeros along the longitude dimension to allow for fractional offsets to be considered
    x_ext = torch.zeros(
        kernel_size,
        nlat_in,
        nlon_out,
        batch_size * n_chans,
        device=x.device,
        dtype=x.dtype,
    )
    x_ext[:, :, ::pscale, :] = x.reshape(
        batch_size * n_chans, kernel_size, nlat_in, nlon_in
    ).permute(1, 2, 3, 0)
    # we need to go backwards through the vector, so we flip the axis
    x_ext = x_ext.contiguous()

    y = torch.zeros(
        kernel_size,
        nlon_out,
        nlat_out,
        batch_size * n_chans,
        device=x.device,
        dtype=x.dtype,
    )

    for pout in range(nlon_out):
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        # TODO: double-check why this has to happen first
        x_ext = torch.roll(x_ext, -1, dims=2)
        # sparse contraction with the modified psi
        y[:, pout, :, :] = torch.bmm(
            psi_mod, x_ext.reshape(kernel_size, nlat_in * nlon_out, -1)
        )

    # sum over the kernel dimension and reshape to the correct output size
    y = y.sum(dim=0).permute(2, 1, 0).reshape(batch_size, n_chans, nlat_out, nlon_out)

    return y


class DiscreteContinuousConvS2(DiscreteContinuousConv):
    """
    Discrete-continuous convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # compute theta cutoff based on the bandlimit of the input field
        if theta_cutoff is None:
            theta_cutoff = (
                (self.kernel_shape[0] + 1) * torch.pi / float(self.nlat_in - 1)
            )

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = (
            2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / self.nlon_in
        )
        self.register_buffer("quad_weights", quad_weights, persistent=False)

        idx, vals = _precompute_convolution_tensor_s2(
            in_shape,
            out_shape,
            self.kernel_shape,
            grid_in=grid_in,
            grid_out=grid_out,
            theta_cutoff=theta_cutoff,
        )

        self.register_buffer("psi_idx", idx, persistent=False)
        self.register_buffer("psi_vals", vals, persistent=False)

    def get_psi(self):
        psi = torch.sparse_coo_tensor(
            self.psi_idx,
            self.psi_vals,
            size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_in),
        ).coalesce()
        return psi

    def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tensor:
        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

        psi = self.get_psi()

        if x.is_cuda and use_triton_kernel:
            x = _disco_s2_contraction_triton(x, psi, self.nlon_out)
        else:
            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
        out = torch.einsum(
            "bgckxy,gock->bgoxy",
            x,
            self.weight.reshape(
                self.groups, -1, self.weight.shape[1], self.weight.shape[2]
            ),
        )
        out = out.reshape(out.shape[0], -1, out.shape[-2], out.shape[-1])

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
    """
    Discrete-continuous transpose convolutions (DISCO) on the 2-Sphere as described in [1].

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

        # bandlimit
        if theta_cutoff is None:
            theta_cutoff = (
                (self.kernel_shape[0] + 1) * torch.pi / float(self.nlat_in - 1)
            )

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

        # integration weights
        _, wgl = _precompute_latitudes(self.nlat_in, grid=grid_in)
        quad_weights = (
            2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / self.nlon_in
        )
        self.register_buffer("quad_weights", quad_weights, persistent=False)

        # switch in_shape and out_shape since we want transpose conv
        idx, vals = _precompute_convolution_tensor_s2(
            out_shape,
            in_shape,
            self.kernel_shape,
            grid_in=grid_out,
            grid_out=grid_in,
            theta_cutoff=theta_cutoff,
        )

        self.register_buffer("psi_idx", idx, persistent=False)
        self.register_buffer("psi_vals", vals, persistent=False)

    def get_psi(self):
        psi = torch.sparse_coo_tensor(
            self.psi_idx,
            self.psi_vals,
            size=(self.kernel_size, self.nlat_in, self.nlat_out * self.nlon_out),
        ).coalesce()
        return psi

    def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tensor:
        # extract shape
        B, C, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
        x = torch.einsum(
            "bgcxy,gock->bgokxy",
            x,
            self.weight.reshape(
                self.groups, -1, self.weight.shape[1], self.weight.shape[2]
            ),
        )
        x = x.reshape(x.shape[0], -1, x.shape[-3], x.shape[-2], x.shape[-1])

        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

        psi = self.get_psi()

        if x.is_cuda and use_triton_kernel:
            out = _disco_s2_transpose_contraction_triton(x, psi, self.nlon_out)
        else:
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


class DiscreteContinuousConv2d(DiscreteContinuousConv):
    """
    Discrete-continuous convolutions (DISCO) on arbitrary 2d grids.

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        grid_in: torch.Tensor,
        grid_out: torch.Tensor,
        kernel_shape: Union[int, List[int]],
        n_in: Optional[Tuple[int]] = None,
        n_out: Optional[Tuple[int]] = None,
        quad_weights: Optional[torch.Tensor] = None,
        periodic: Optional[bool] = False,
        groups: Optional[int] = 1,
        bias: Optional[bool] = True,
        radius_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        # the instantiator supports convenience constructors for the input and output grids
        if isinstance(grid_in, torch.Tensor):
            assert isinstance(quad_weights, torch.Tensor)
            assert not periodic
        elif isinstance(grid_in, str):
            assert n_in is not None
            assert len(n_in) == 2
            x, wx = _precompute_grid(n_in[0], grid=grid_in, periodic=periodic)
            y, wy = _precompute_grid(n_in[1], grid=grid_in, periodic=periodic)
            x, y = torch.meshgrid(torch.from_numpy(x), torch.from_numpy(y))
            wx, wy = torch.meshgrid(torch.from_numpy(wx), torch.from_numpy(wy))
            grid_in = torch.stack([x.reshape(-1), y.reshape(-1)])
            quad_weights = (wx * wy).reshape(-1)
        else:
            raise ValueError(f"Unknown grid input type of type {type(grid_in)}")

        if isinstance(grid_out, torch.Tensor):
            pass
        elif isinstance(grid_out, str):
            assert n_out is not None
            assert len(n_out) == 2
            x, wx = _precompute_grid(n_out[0], grid=grid_out, periodic=periodic)
            y, wy = _precompute_grid(n_out[1], grid=grid_out, periodic=periodic)
            x, y = torch.meshgrid(torch.from_numpy(x), torch.from_numpy(y))
            grid_out = torch.stack([x.reshape(-1), y.reshape(-1)])
        else:
            raise ValueError(f"Unknown grid output type of type {type(grid_out)}")

        # check that input arrays are valid point clouds in 2D
        assert len(grid_in.shape) == 2
        assert len(grid_out.shape) == 2
        assert len(quad_weights.shape) == 1
        assert grid_in.shape[0] == 2
        assert grid_out.shape[0] == 2

        self.n_in = grid_in.shape[-1]
        self.n_out = grid_out.shape[-1]

        # compute the cutoff radius based on the bandlimit of the input field
        # TODO: this heuristic is ad-hoc! Verify that we do the right one
        if radius_cutoff is None:
            radius_cutoff = (
                2 * (self.kernel_shape[0] + 1) / float(math.sqrt(self.n_in) - 1)
            )

        if radius_cutoff <= 0.0:
            raise ValueError("Error, radius_cutoff has to be positive.")

        # integration weights
        self.register_buffer("quad_weights", quad_weights, persistent=False)

        idx, vals = _precompute_convolution_tensor_2d(
            grid_in,
            grid_out,
            self.kernel_shape,
            radius_cutoff=radius_cutoff,
            periodic=periodic,
        )

        # to improve performance, we make psi a matrix by merging the first two dimensions
        # This has to be accounted for in the forward pass
        idx = torch.stack([idx[0] * self.n_out + idx[1], idx[2]], dim=0)

        self.register_buffer("psi_idx", idx.contiguous(), persistent=False)
        self.register_buffer("psi_vals", vals.contiguous(), persistent=False)

    def get_psi(self):
        psi = torch.sparse_coo_tensor(
            self.psi_idx, self.psi_vals, size=(self.kernel_size * self.n_out, self.n_in)
        )
        return psi

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

        psi = self.get_psi()

        # extract shape
        B, C, _ = x.shape

        # bring into the right shape for the bmm and perform it
        x = x.reshape(B * C, self.n_in).permute(1, 0).contiguous()
        x = torch.mm(psi, x)
        x = x.permute(1, 0).reshape(B, C, self.kernel_size, self.n_out)
        x = x.reshape(B, self.groups, self.groupsize, self.kernel_size, self.n_out)

        # do weight multiplication
        out = torch.einsum(
            "bgckx,gock->bgox",
            x,
            self.weight.reshape(
                self.groups, -1, self.weight.shape[1], self.weight.shape[2]
            ),
        )
        out = out.reshape(out.shape[0], -1, out.shape[-1])

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1)

        return out


class DiscreteContinuousConvTranspose2d(DiscreteContinuousConv):
    """
    Discrete-continuous convolutions (DISCO) on arbitrary 2d grids.

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        grid_in: torch.Tensor,
        grid_out: torch.Tensor,
        kernel_shape: Union[int, List[int]],
        n_in: Optional[Tuple[int]] = None,
        n_out: Optional[Tuple[int]] = None,
        quad_weights: Optional[torch.Tensor] = None,
        periodic: Optional[bool] = False,
        groups: Optional[int] = 1,
        bias: Optional[bool] = True,
        radius_cutoff: Optional[float] = None,
    ):
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        # the instantiator supports convenience constructors for the input and output grids
        if isinstance(grid_in, torch.Tensor):
            assert isinstance(quad_weights, torch.Tensor)
            assert not periodic
        elif isinstance(grid_in, str):
            assert n_in is not None
            assert len(n_in) == 2
            x, wx = _precompute_grid(n_in[0], grid=grid_in, periodic=periodic)
            y, wy = _precompute_grid(n_in[1], grid=grid_in, periodic=periodic)
            x, y = torch.meshgrid(torch.from_numpy(x), torch.from_numpy(y))
            wx, wy = torch.meshgrid(torch.from_numpy(wx), torch.from_numpy(wy))
            grid_in = torch.stack([x.reshape(-1), y.reshape(-1)])
            quad_weights = (wx * wy).reshape(-1)
        else:
            raise ValueError(f"Unknown grid input type of type {type(grid_in)}")

        if isinstance(grid_out, torch.Tensor):
            pass
        elif isinstance(grid_out, str):
            assert n_out is not None
            assert len(n_out) == 2
            x, wx = _precompute_grid(n_out[0], grid=grid_out, periodic=periodic)
            y, wy = _precompute_grid(n_out[1], grid=grid_out, periodic=periodic)
            x, y = torch.meshgrid(torch.from_numpy(x), torch.from_numpy(y))
            grid_out = torch.stack([x.reshape(-1), y.reshape(-1)])
        else:
            raise ValueError(f"Unknown grid output type of type {type(grid_out)}")

        # check that input arrays are valid point clouds in 2D
        assert len(grid_in.shape) == 2
        assert len(grid_out.shape) == 2
        assert len(quad_weights.shape) == 1
        assert grid_in.shape[0] == 2
        assert grid_out.shape[0] == 2

        self.n_in = grid_in.shape[-1]
        self.n_out = grid_out.shape[-1]

        # compute the cutoff radius based on the bandlimit of the input field
        # TODO: this heuristic is ad-hoc! Verify that we do the right one
        if radius_cutoff is None:
            radius_cutoff = (
                2 * (self.kernel_shape[0] + 1) / float(math.sqrt(self.n_in) - 1)
            )

        if radius_cutoff <= 0.0:
            raise ValueError("Error, radius_cutoff has to be positive.")

        # integration weights
        self.register_buffer("quad_weights", quad_weights, persistent=False)

        # precompute the transposed tensor
        idx, vals = _precompute_convolution_tensor_2d(
            grid_out,
            grid_in,
            self.kernel_shape,
            radius_cutoff=radius_cutoff,
            periodic=periodic,
        )

        # to improve performance, we make psi a matrix by merging the first two dimensions
        # This has to be accounted for in the forward pass
        idx = torch.stack([idx[0] * self.n_out + idx[2], idx[1]], dim=0)

        self.register_buffer("psi_idx", idx.contiguous(), persistent=False)
        self.register_buffer("psi_vals", vals.contiguous(), persistent=False)

    def get_psi(self):
        psi = torch.sparse_coo_tensor(
            self.psi_idx, self.psi_vals, size=(self.kernel_size * self.n_out, self.n_in)
        )
        return psi

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # pre-multiply x with the quadrature weights
        x = self.quad_weights * x

        psi = self.get_psi()

        # extract shape
        B, C, _ = x.shape

        # bring into the right shape for the bmm and perform it
        x = x.reshape(B * C, self.n_in).permute(1, 0).contiguous()
        x = torch.mm(psi, x)
        x = x.permute(1, 0).reshape(B, C, self.kernel_size, self.n_out)
        x = x.reshape(B, self.groups, self.groupsize, self.kernel_size, self.n_out)

        # do weight multiplication
        out = torch.einsum(
            "bgckx,gock->bgox",
            x,
            self.weight.reshape(
                self.groups, -1, self.weight.shape[1], self.weight.shape[2]
            ),
        )
        out = out.reshape(out.shape[0], -1, out.shape[-1])

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1)

        return out


class EquidistantDiscreteContinuousConv2d(DiscreteContinuousConv):
    """
    Discrete-continuous convolutions (DISCO) on arbitrary 2d grids.

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_shape: Union[int, List[int]],
        in_shape: Tuple[int],
        groups: Optional[int] = 1,
        bias: Optional[bool] = True,
        radius_cutoff: Optional[float] = None,
        padding_mode: str = "circular",
        use_min_dim: bool = True,
        **kwargs,
    ):
        """
        use_min_dim (bool, optional): Use the minimum dimension of the input
            shape to compute the cutoff radius. Otherwise use the maximum
            dimension. Defaults to True.
        """
        super().__init__(in_channels, out_channels, kernel_shape, groups, bias)

        self.padding_mode = padding_mode

        # compute the cutoff radius based on the assumption that the grid is [-1, 1]^2
        # this still assumes a quadratic domain
        f = min if use_min_dim else max
        if radius_cutoff is None:
            radius_cutoff = 2 * (self.kernel_shape[0]) / float(f(*in_shape))
        # 2 * 0.02 * 7 / 2 + 1 = 1.14
        self.psi_local_size = math.floor(2 * radius_cutoff * f(*in_shape) / 2) + 1

        # psi_local is essentially the support of the hat functions evaluated locally
        x = torch.linspace(-radius_cutoff, radius_cutoff, self.psi_local_size)
        x, y = torch.meshgrid(x, x)
        grid_in = torch.stack([x.reshape(-1), y.reshape(-1)])
        grid_out = torch.Tensor([[0.0], [0.0]])

        idx, vals = _precompute_convolution_tensor_2d(
            grid_in,
            grid_out,
            self.kernel_shape,
            radius_cutoff=radius_cutoff,
            periodic=False,
        )

        psi_loc = torch.zeros(
            self.kernel_size, self.psi_local_size * self.psi_local_size
        )
        for ie in range(len(vals)):
            f = idx[0, ie]
            j = idx[2, ie]
            v = vals[ie]
            psi_loc[f, j] = v

        # compute local version of the filter matrix
        psi_loc = psi_loc.reshape(
            self.kernel_size, self.psi_local_size, self.psi_local_size
        )
        # normalization by the quadrature weights
        psi_loc = 4.0 * psi_loc / float(in_shape[0] * in_shape[1])

        self.register_buffer("psi_loc", psi_loc, persistent=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:

        kernel = torch.einsum("kxy,ogk->ogxy", self.psi_loc, self.weight)

        left_pad = self.psi_local_size // 2
        right_pad = (self.psi_local_size + 1) // 2 - 1
        x = F.pad(x, (left_pad, right_pad, left_pad, right_pad), mode=self.padding_mode)
        out = F.conv2d(
            x, kernel, self.bias, stride=1, dilation=1, padding=0, groups=self.groups
        )

        return out