File size: 21,443 Bytes
cc12d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import spaces
import os
import gradio as gr
import easyocr
import numpy as np
import cv2
import base64
import torch
from shapely import Polygon
from ultralytics import YOLO

from io import BytesIO
from openai import OpenAI
from PIL import Image, ImageDraw, ImageFont

from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline

import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))

bubble_detection_model = YOLO("speech_bubble_model.pt")

language_to_ocr = {
    'Simplified Chinese': 'ch_sim',
    'Traditional Chinese': 'ch_tra',
    'Korean': 'ko',
    'Japanese': 'ja',
    'English': 'en',
}

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')

MARKDOWN = """
# Made by Nativ
"""

check_min_version("0.30.2")
transformer = FluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
    )

cuda_device =torch.device("cuda")
# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    controlnet=controlnet,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to(cuda_device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)


def localize_boxes(merged_results, img_boxes, source_language, target_language):
    # Convert image to base64
    buffered = BytesIO()
    img_boxes.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    
    print(merged_results)
    
    prompt = f"""You are an expert translator and localization specialist with deep understanding of both {source_language} and {target_language} cultures.

    Task: Translate the detected text while preserving the cultural context and maintaining visual harmony. Make the results in capital letters.

    Source Text and Coordinates:
    {merged_results}

    Requirements:
    1. Maintain the original meaning and tone while adapting to {target_language} cultural context
    2. Keep translations concise and visually balanced (similar character length when possible)
    3. Preserve any:
    - Brand names
    - Product names
    - Technical terms
    - Numbers and units
    4. Consider the visual context from the provided image
    5. Use appropriate formality level for {target_language}
    6. Maintain any special formatting (if present)

    Format your response EXACTLY as a JSON-like list of dictionaries. Keep the box coordinates EXACTLY as they are, do not change them, only translate the text.
    [{{'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]], 'text': 'translated_text'}}]

    Important: Only output the JSON format above, no explanations or additional text."""

    client = OpenAI(api_key=OPENAI_API_KEY)
    
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/png;base64,{img_str}"
                        }
                    }
                ]
            }
        ],
        max_tokens=1000,
        temperature=0
    )
    
    try:
        translation_text = response.choices[0].message.content
        translation_text = translation_text.replace("```json", "").replace("```", "").strip()
        translated_results = eval(translation_text)
        return translated_results
    except Exception as e:
        print(f"Error parsing GPT-4o response: {e}")
        return merged_results  
    
def merge_boxes(boxes, image_shape, distance_threshold=10):
    """Merge boxes that are close to each other and return their associated text"""
    if not boxes:
        return []
    
    # Extract boxes and create mapping to original data
    boxes_only = [box[0] for box in boxes]
    texts = [box[1] for box in boxes]  # Extract the text content
    
    # Create a binary mask of all boxes
    height, width = image_shape[:2]
    mask = np.zeros((height, width), dtype=np.uint8)
    
    # Draw all boxes on mask and create a mapping of pixel positions to box indices
    box_indices_map = {}  # Will store which original box each pixel belongs to
    for idx, coords in enumerate(boxes_only):
        pts = np.array(coords, dtype=np.int32)
        cv2.fillPoly(mask, [pts], 255)
        # Store the indices of boxes for each filled pixel
        y_coords, x_coords = np.where(mask == 255)
        for y, x in zip(y_coords, x_coords):
            if (y, x) not in box_indices_map:
                box_indices_map[(y, x)] = []
            box_indices_map[(y, x)].append(idx)
    
    # Dilate to connect nearby components
    kernel = np.ones((distance_threshold, distance_threshold), np.uint8)
    dilated = cv2.dilate(mask, kernel, iterations=1)
    
    # Find connected components
    num_labels, labels = cv2.connectedComponents(dilated)
    
    # Create new merged boxes with their associated text
    merged_results = []
    for label in range(1, num_labels):  # Skip background (0)
        points = np.where(labels == label)
        if len(points[0]):  # If component is not empty
            y0, x0 = points[0].min(), points[1].min()
            y1, x1 = points[0].max(), points[1].max()
            # Add small padding
            x0 = max(0, x0 - 2)
            y0 = max(0, y0 - 2)
            x1 = min(width, x1 + 2)
            y1 = min(height, y1 + 2)
            
            # Find all original boxes that overlap with this merged box
            box_indices = set()
            for y in range(y0, y1+1):
                for x in range(x0, x1+1):
                    if (y, x) in box_indices_map:
                        box_indices.update(box_indices_map[(y, x)])
            
            # Combine text from all overlapping boxes
            combined_text = ' '.join([texts[idx] for idx in box_indices])
            
            merged_results.append({
                'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]],
                'text': combined_text
            })    
    return merged_results

def is_box_inside_yolo(box, yolo_boxes, overlap_threshold=0.5):
    """
    Check if a text box is inside any of the YOLO-detected speech bubbles.
    box: [[x0,y0], [x1,y0], [x1,y1], [x0,y1]]
    yolo_boxes: list of YOLO boxes in xywh format
    overlap_threshold: minimum overlap ratio required to consider the text inside bubble
    """
    text_poly = Polygon(box)
    text_area = text_poly.area
    
    for yolo_box in yolo_boxes:
        x_center, y_center, width, height = yolo_box
        x1, y1 = x_center - width / 2, y_center - height / 2
        x2, y2 = x_center + width / 2, y_center + height / 2
        bubble_box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
        bubble_poly = Polygon(bubble_box)
        
        # Calculate intersection
        if text_poly.intersects(bubble_poly):
            intersection = text_poly.intersection(bubble_poly)
            overlap_ratio = intersection.area / text_area
            if overlap_ratio >= overlap_threshold:
                return True
    
    return False

def remove_text_regions(image, boxes, yolo_boxes):
    """Fill detected text regions with white"""
    img_removed = image.copy()
    mask = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    
    # Fill all detected boxes with white
    for box in boxes:
        pts = np.array(box[0], dtype=np.int32)
        if is_box_inside_yolo(box[0], yolo_boxes):
            cv2.fillPoly(img_removed, [pts], (255, 255, 255, 255))
        cv2.fillPoly(mask, [pts], (255, 255, 255, 255))
    
    img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
    
    return img_removed_rgb, mask
        
def fit_text_to_box(text, merged_coordinates, angle=0, font_path):
    """
    Adjusts the text to fit optimally inside the given box dimensions.
    
    Args:
        text (str): The text to fit.
        box_size (tuple): A tuple (width, height) specifying the box dimensions.
        font_path (str): Path to the font file to be used.
    
    Returns:
        PIL.Image: An image with the text fitted inside the box.
    """
    width, height = merged_coordinates[1][0] - merged_coordinates[0][0], merged_coordinates[2][1] - merged_coordinates[1][1]
    font_size = 1

    # Create a dummy image to measure text size
    dummy_image = Image.new('RGB', (width, height))
    draw = ImageDraw.Draw(dummy_image)

    # Load a small font initially
    font = ImageFont.truetype(font_path, font_size)

    while True:
        # Break text into lines that fit within the width
        words = text.split()
        lines = []
        current_line = []
        for word in words:
            test_line = " ".join(current_line + [word])
            test_width = draw.textlength(test_line, font=font)
            if test_width <= width:
                current_line.append(word)
            else:
                lines.append(" ".join(current_line))
                current_line = [word]
        if current_line:
            lines.append(" ".join(current_line))

        # Calculate total height required for the lines
        line_height = font.getbbox('A')[3] + 5  # Add line spacing
        total_height = len(lines) * line_height

        # Check if text fits within the height
        if total_height > height or any(draw.textlength(line, font=font) > width for line in lines):
            break

        # Increment font size
        font_size += 1
        font = ImageFont.truetype(font_path, font_size)

    # Use the last fitting font
    font_size -= 1
    font = ImageFont.truetype(font_path, font_size)

    # Create the final image with a transparent background
    image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
    draw = ImageDraw.Draw(image)

    # Center the text vertically and horizontally
    lines = []
    current_line = []
    for word in text.split():
        test_line = " ".join(current_line + [word])
        if draw.textlength(test_line, font=font) <= width:
            current_line.append(word)
        else:
            lines.append(" ".join(current_line))
            current_line = [word]
    if current_line:
        lines.append(" ".join(current_line))

    line_height = font.getbbox('A')[3] + 5
    total_text_height = len(lines) * line_height
    y_offset = (height - total_text_height) // 2

    for line in lines:
        text_width = draw.textlength(line, font=font)
        x_offset = (width - text_width) // 2
        draw.text((x_offset, y_offset), line, font=font, fill="black")
        y_offset += line_height

    rotated_image = image.rotate(0, expand=True)

    return rotated_image

def shorten_box(merged_coordinates, pct=0):
    # Calculate the center of the box
    center_x = (merged_coordinates[0][0] + merged_coordinates[2][0]) / 2
    center_y = (merged_coordinates[0][1] + merged_coordinates[2][1]) / 2
    
    # Calculate the width and height of the box
    width = merged_coordinates[1][0] - merged_coordinates[0][0]
    height = merged_coordinates[2][1] - merged_coordinates[1][1]
    
    # Shrink width and height by 10%
    new_width = width * 1-pct/100.
    new_height = height * 1-pct/100.
    
    # Calculate the new coordinates
    merged_coordinates_new = np.array([
        [center_x - new_width / 2, center_y - new_height / 2],  # Top-left
        [center_x + new_width / 2, center_y - new_height / 2],  # Top-right
        [center_x + new_width / 2, center_y + new_height / 2],  # Bottom-right
        [center_x - new_width / 2, center_y + new_height / 2]   # Bottom-left
    ], dtype=int)

    return merged_coordinates_new


def detect_and_show_text(reader, image):
    """Detect text and show bounding boxes"""
    if isinstance(image, Image.Image):
        img_array = np.array(image)
    else:
        img_array = image
        
    # Get YOLO results first
    yolo_results = bubble_detection_model(img_array, conf=7)[0]
    yolo_boxes = yolo_results.boxes.xywh.cpu().numpy()  # Get YOLO boxes in xywh format
    
    # Detect text
    results = reader.readtext(img_array, text_threshold=0.6)
    
    # Create visualization
    img_boxes = img_array.copy()
    
    # Ensure we're working with RGB
    if len(img_array.shape) == 3:
        if img_array.shape[2] == 3:  # If it's a 3-channel image
            img_boxes = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
    
    # Draw original EasyOCR boxes on img_boxes
    for result in results:
        pts = np.array(result[0], dtype=np.int32)
        cv2.polylines(img_boxes, [pts], isClosed=True, color=(0, 255, 0), thickness=2)  # Draw original boxes in green
    
    # Remove text and merge boxes for visualization
    img_removed, mask = remove_text_regions(img_array, results, yolo_boxes)
    merged_results = merge_boxes(results, img_array.shape)
    
    # Draw merged detection boxes and text (if needed)
    for merged_result in merged_results:
        pts = np.array(merged_result['box'], dtype=np.int32)
        # Color the box red if inside bubble, blue if outside
        color = (0, 0, 255) if is_box_inside_yolo(merged_result['box'], yolo_boxes) else (255, 0, 0)
        cv2.polylines(img_boxes, [pts], True, color, 2)  # Draw merged boxes in red or blue
    
    # Convert to RGB
    img_boxes_rgb = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
    img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
    mask_rgba = cv2.cvtColor(mask, cv2.COLOR_RGB2RGBA)
    
    # Get YOLO visualization without labels
    bubbles_img = yolo_results.plot(labels=False)
    
    # Convert to PIL Images
    img_boxes_pil = Image.fromarray(img_boxes_rgb)
    img_removed_pil = Image.fromarray(img_removed_rgb)
    bubbles_img_pil = Image.fromarray(bubbles_img)
    mask_pil = Image.fromarray(mask_rgba)

    return img_boxes_pil, bubbles_img_pil, img_removed_pil, merged_results, mask_pil


def position_text_back(text, merged_coordinates, inpainted_image, font_path):
    coords = shorten_box(merged_coordinates)
    top_left_coords = coords[0]
    text_image = fit_text_to_box(text, coords, font_path)

    # Create a transparent layer to blend
    layer = Image.new("RGBA", inpainted_image.size, (0, 0, 0, 0))

    # Paste the text image onto the transparent layer at the specified position
    layer.paste(text_image, tuple(top_left_coords), mask=text_image)

    # Ensure both images are in "RGBA" mode
    if inpainted_image.mode != "RGBA":
        inpainted_image = inpainted_image.convert("RGBA")
    if layer.mode != "RGBA":
        layer = layer.convert("RGBA")

    # Blend the transparent layer with the inpainted image
    blended_image = Image.alpha_composite(inpainted_image, layer)

    return blended_image

@spaces.GPU()
def process(image, mask,
            prompt="background",
            negative_prompt="text",
            controlnet_conditioning_scale=0.9,
            guidance_scale=3.5,
            seed=124,
            num_inference_steps=10,
            true_guidance_scale=3.5            
            ):
    size = (768, 768)
    image_pil = Image.fromarray(image)
    image_or = image_pil.copy()
    
    image_pil = image_pil.convert("RGB").resize(size)
    mask = mask.convert("RGB").resize(size)
    generator = torch.Generator(device="cuda").manual_seed(seed)
    result = pipe(
    prompt=prompt,
    height=size[1],
    width=size[0],
    control_image=image_pil,
    control_mask=mask,
    num_inference_steps=num_inference_steps,
    generator=generator,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    guidance_scale=guidance_scale,
    negative_prompt=negative_prompt,
    true_guidance_scale=true_guidance_scale
    ).images[0]

    return result.resize((image_or.size[:2]))


@spaces.GPU()
def process_image(image, source_language, target_language, mode, font):
    """Main processing function for Gradio"""
    if image is None:
        return None, None, None, []
    
    # Initialize reader (equivalent to what handle_localization did)
    easy_ocr_lan = language_to_ocr.get(source_language, 'en')
    reader = easyocr.Reader([easy_ocr_lan], model_storage_directory='.', gpu=False)
    
    # Detect text and get results
    img_with_boxes, img_bubbles, img_removed_text, merged_results, mask = detect_and_show_text(reader, image)

    if mode == "Basic":
        img_inpainted = img_removed_text
    else:
        img_inpainted = process(image, mask)
    
    # Get translations
    translations = localize_boxes(
        merged_results,
        img_with_boxes,
        source_language,
        target_language
    )
    
    # Create initial result with translations
    final_result = img_inpainted.copy()
    for translation in translations:
        box = translation['box']
        text = translation['text']
        final_result = position_text_back(text, box, final_result, font_path=f"fonts/{font}.ttf")
    
    # Return all results directly (no need to store in session state)
    return img_with_boxes, img_bubbles, img_inpainted, final_result, translations, np.array(mask)


def update_translations(image, edited_texts, translations_list, img_removed_text, font):
    """Update the image with edited translations"""
    if image is None or img_removed_text is None:
        return None
    
    # Convert numpy array back to PIL Image
    img_removed = Image.fromarray(img_removed_text)
    final_result = img_removed.copy()
    
    # Update the translations with edited texts
    for trans, new_text in zip(translations_list, edited_texts.split('\n')):
        trans['text'] = new_text.strip()
        box = trans['box']
        final_result = position_text_back(new_text, box, final_result, font_path=f"fonts/{font}.ttf")
    
    return np.array(final_result)



with gr.Blocks(title="Nativ - Demo") as demo:
    # Store translations list in state
    translations_state = gr.State([])
    
    gr.Markdown("# Nativ - Demo")
    
    with gr.Row():
        with gr.Column():
            # Input components
            input_image = gr.Image(type="numpy", label="Upload Image")
            source_language = gr.Dropdown(
                choices=['Simplified Chinese', 'Traditional Chinese', 'Korean', 'Japanese', 'English'],
                value='Simplified Chinese',
                label="Source Language"
            )
            target_language = gr.Dropdown(
                choices=['English', 'Spanish', 'Chinese', 'Korean', 'French', 'Japanese'],
                value='English',
                label="Target Language"
            )
            # Toggle for mode selection
            localization_mode = gr.Radio(
                choices=["Basic", "Advanced"],
                value="Basic",
                label="Localization Mode"
            )
            font_selector_i = gr.Dropdown(
            choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'],  # Add more fonts as needed
            value='omniscript_bold',
                label="Select Font"
            )
            process_btn = gr.Button("Localize")
        
        with gr.Column():
            # Output components
            speech_bubbles = gr.Image(type="numpy", label="Detected Speech Bubbles", interactive=False)
            detected_boxes = gr.Image(type="numpy", label="Detected Text Regions", interactive=False)
            removed_text = gr.Image(type="numpy", label="Removed Text", interactive=False)
            final_output = gr.Image(type="numpy", label="Final Result", interactive=False)
    
    # Translation editing section
    with gr.Row():
        translations_text = gr.Textbox(
            label="Edit Translations (one per line)", 
            lines=5,
            placeholder="Edit translations here..."
        )
        font_selector_f = gr.Dropdown(
            choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'],  # Add more fonts as needed
            value='Arial',
            label="Select Font"
        )
        update_btn = gr.Button("Apply Changes")
    
    def process_and_show_translations(image, source_lang, target_lang, mode, font):
        boxes, bubbles, removed, final, translations, mask = process_image(image, source_lang, target_lang, mode, font)
        # Extract just the texts and join with newlines
        texts = '\n'.join(t['text'] for t in translations)
        return boxes, bubbles, removed, final, texts, translations
    
    # Process button click
    process_btn.click(
        fn=process_and_show_translations,
        inputs=[input_image, source_language, target_language, localization_mode, font_selector_i],
        outputs=[detected_boxes, speech_bubbles, removed_text, final_output, translations_text, translations_state]
    )
    
    # Update translations button click
    update_btn.click(
        fn=update_translations,
        inputs=[input_image, translations_text, translations_state, removed_text, font_selector_f],
        outputs=final_output
    )


demo.launch(debug=False, show_error=True,share=True)