Spaces:
Running
Running
File size: 9,342 Bytes
be03ede 2f9a1ee be03ede 2f9a1ee be03ede |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#**************** IMPORT PACKAGES ********************
import flask
from flask import render_template, jsonify, Flask, redirect, url_for, request, flash
from flask_cors import CORS, cross_origin
from werkzeug.utils import secure_filename
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
#nltk.download('punkt')
print("lets go")
app = flask.Flask(__name__)
app.config["DEBUG"] = True
UPLOAD_FOLDER = './pdfs'
ALLOWED_EXTENSIONS = {'txt', 'pdf'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
#***************** FLASK *****************************
CORS(app)
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
#model_name = 'laxya007/gpt2_legal'
#model_name = 'facebook/bart-large-cnn'
model_name = 'nlpaueb/legal-bert-base-uncased'
#The setup of huggingface.co
print("lets go")
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
print('Using model {}\n'.format(model_name))
# main index page route
@app.route('/')
@cross_origin()
def index():
return render_template('index.html')
@cross_origin()
@app.route('/results')
def results():
return render_template('results.html')
@app.route('/predict', methods=['GET', 'POST'])
def uploads():
if request.method == 'GET':
# Get the file from post request
numsent = int(request.args['number'])
text = str(request.args['text'])
content = text
summary_text = ""
for i, paragraph in enumerate(content.split("\n\n")):
paragraph = paragraph.replace('\n',' ')
paragraph = paragraph.replace('\t','')
paragraph = ' '.join(paragraph.split())
# count words in the paragraph and exclude if less than 4 words
tokens = word_tokenize(paragraph)
# only do real words
tokens = [word for word in tokens if word.isalpha()]
# print("\nTokens: {}\n".format(len(tokens)))
# only do sentences with more than 1 words excl. alpha crap
if len(tokens) <= 1:
continue
# Perhaps also ignore paragraphs with no sentence?
sentences = sent_tokenize(paragraph)
paragraph = ' '.join(tokens)
print("\nParagraph:")
print(paragraph+"\n")
# T5 needs to have 'summarize' in order to work:
# text = "summarize:" + paragraph
text = paragraph
summary = bert_legal_model(text, min_length = 8, ratio = 0.05)
# summary = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
summary_text += str(summary) + "\n\n"
print("Summary:")
print(summary)
content2 = content.replace('\n',' ')
content2 = content2.replace('\t','')
summary = bert_legal_model(content2, min_length = 8, num_sentences=25)
# write all to file for inspection and storage
all_text = "The Summary-- " + str(summary) + "\n\n\n" \
+ "The Larger Summary-- " + str(summary_text)
all_text2 = all_text.encode('latin-1', 'replace').decode('latin-1')
all_text2 = all_text2.replace('?','.')
all_text2 = all_text2.replace('\n',' ')
all_text2 = all_text2.replace('..','.')
all_text2 = all_text2.replace(',.',',')
all_text2 = all_text2.replace('-- ','\n\n\n')
pdf = FPDF()
# Add a page
pdf.add_page()
pdf.set_font("Times", size = 12)
# open the text file in read mode
f = all_text2
# insert the texts in pdf
pdf.multi_cell(190, 10, txt = f, align = 'C')
# save the pdf with name .pdf
pdf.output("./static/legal.pdf")
all_text
return render_template('results.html')
return None
@app.route('/predictpdf', methods=['GET', 'POST'])
def uploads2():
if request.method == 'POST':
# Get the file from post request
numsent = int(request.args['number'])
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit an empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file and allowed_file(file.filename):
filename = "legal.pdf"
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
f = request.files['file']
f.save(secure_filename(f.filename))
path = os.getcwd()
folder_name = 'pdfs'
path = os.path.join(path, folder_name)
list_of_files = []
for root, dirs, files in os.walk(path):
for file in files:
if(file.endswith(".pdf")):
# print(os.path.join(root,file))
list_of_files.append(os.path.join(root,file))
print("\nProcessing {} files...\n".format(len(list_of_files)))
total_pages = 0
for filename in list_of_files:
print(filename)
file = os.path.splitext(os.path.basename(filename))[0]
pages = pdf2image.convert_from_path(pdf_path=filename, dpi=400, size=(1654,2340))
total_pages += len(pages)
print("\nProcessing the next {} pages...\n".format(len(pages)))
# Then save all pages as images and convert them to text except the last page
# TODO: create this as a function
content = ""
dir_name = 'images/' + file + '/'
os.makedirs(dir_name, exist_ok=True)
# If folder doesn't exist, then create it.
for i in range(len(pages)-1):
pages[i].save(dir_name + str(i) + '.jpg')
# OCR the image using Google's tesseract
content += pt.image_to_string(pages[i])
summary_text = ""
for i, paragraph in enumerate(content.split("\n\n")):
paragraph = paragraph.replace('\n',' ')
paragraph = paragraph.replace('\t','')
paragraph = ' '.join(paragraph.split())
# count words in the paragraph and exclude if less than 4 words
tokens = word_tokenize(paragraph)
# only do real words
tokens = [word for word in tokens if word.isalpha()]
# print("\nTokens: {}\n".format(len(tokens)))
# only do sentences with more than 1 words excl. alpha crap
if len(tokens) <= 1:
continue
# Perhaps also ignore paragraphs with no sentence?
sentences = sent_tokenize(paragraph)
paragraph = ' '.join(tokens)
print("\nParagraph:")
print(paragraph+"\n")
# T5 needs to have 'summarize' in order to work:
# text = "summarize:" + paragraph
text = paragraph
summary = bert_legal_model(text, min_length = 8, ratio = 0.05)
# summary = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
summary_text += str(summary) + "\n\n"
print("Summary:")
print(summary)
content2 = content.replace('\n',' ')
content2 = content2.replace('\t','')
summary = bert_legal_model(content2, min_length = 8, num_sentences=25)
# write all to file for inspection and storage
all_text = "The Summary-- " + str(summary) + "\n\n\n" \
+ "The Larger Summary-- " + str(summary_text)
all_text2 = all_text.encode('latin-1', 'replace').decode('latin-1')
all_text2 = all_text2.replace('?','.')
all_text2 = all_text2.replace('\n',' ')
all_text2 = all_text2.replace('..','.')
all_text2 = all_text2.replace(',.',',')
all_text2 = all_text2.replace('-- ','\n\n\n')
pdf = FPDF()
# Add a page
pdf.add_page()
pdf.set_font("Times", size = 12)
# open the text file in read mode
f = all_text2
# insert the texts in pdf
pdf.multi_cell(190, 10, txt = f, align = 'C')
# save the pdf with name .pdf
pdf.output("./static/legal.pdf")
all_text
return render_template('results.html')
return None
if __name__ == "__main__":
app.run()
|