File size: 11,114 Bytes
e37eda0
3eb59a4
 
75829f5
82bfc51
6a2a63a
e37eda0
82bfc51
 
 
 
 
cd60664
0bb1965
82bfc51
 
0bb1965
 
 
 
b9a3a14
cd60664
1d00adc
0bb1965
 
cd60664
 
0bb1965
82bfc51
5189e45
9e9d1c1
cd60664
5189e45
cd60664
 
 
82bfc51
 
 
cd60664
 
 
 
82bfc51
 
b21f6bf
 
5189e45
0bb1965
 
 
82bfc51
0bb1965
 
 
 
82bfc51
1d00adc
 
82bfc51
 
 
746d24c
82bfc51
 
0bb1965
82bfc51
5189e45
0bb1965
5189e45
82bfc51
1d00adc
b21f6bf
 
 
 
 
 
 
 
 
 
 
 
 
1d00adc
 
 
 
 
 
 
 
 
 
 
 
0bb1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d00adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bfc51
 
 
 
 
 
 
 
 
1d00adc
 
 
 
 
82bfc51
 
1d00adc
82bfc51
0bb1965
82bfc51
 
 
1d00adc
82bfc51
1d00adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb1965
1d00adc
 
 
5189e45
1d00adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b21f6bf
1d00adc
 
 
 
 
 
 
 
82bfc51
1d00adc
 
 
82bfc51
 
 
 
 
 
 
 
 
 
 
 
 
0bb1965
 
 
cd60664
0bb1965
82bfc51
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import streamlit as st
import pandas as pd
import sqlite3
from langchain import OpenAI, LLMChain, PromptTemplate
import sqlparse
import logging

# Initialize conversation history
if 'history' not in st.session_state:
    st.session_state.history = []

# OpenAI API key (ensure it is securely stored)
# You can set the API key in your environment variables or a .env file
openai_api_key = os.getenv("OPENAI_API_KEY")

# Check if the API key is set
if not openai_api_key:
    st.error("OpenAI API key is not set. Please set the OPENAI_API_KEY environment variable.")
    st.stop()

# Step 1: Upload CSV data file (or use default)
st.title("Natural Language to SQL Query App with Enhanced Insights")
st.write("Upload a CSV file to get started, or use the default dataset.")

csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
if csv_file is None:
    data = pd.read_csv("default_data.csv")  # Ensure this file exists in your working directory
    st.write("Using default_data.csv file.")
    table_name = "default_table"
else:
    data = pd.read_csv(csv_file)
    table_name = csv_file.name.split('.')[0]
    st.write(f"Data Preview ({csv_file.name}):")
    st.dataframe(data.head())

# Step 2: Load CSV data into a persistent SQLite database
db_file = 'my_database.db'
conn = sqlite3.connect(db_file)
data.to_sql(table_name, conn, index=False, if_exists='replace')

# SQL table metadata (for validation and schema)
valid_columns = list(data.columns)
st.write(f"Valid columns: {valid_columns}")

# Step 3: Set up the LLM Chains
# SQL Generation Chain
sql_template = """
You are an expert data scientist. Given a natural language question, the name of the table, and a list of valid columns, generate a valid SQL query that answers the question.

Ensure that:

- You only use the columns provided.
- When performing string comparisons in the WHERE clause, make them case-insensitive by using 'COLLATE NOCASE' or the LOWER() function.
- Do not use 'COLLATE NOCASE' in ORDER BY clauses unless sorting a string column.
- Do not apply 'COLLATE NOCASE' to numeric columns.

If the question is vague or open-ended and does not pertain to specific data retrieval, respond with "NO_SQL" to indicate that a SQL query should not be generated.

Question: {question}

Table name: {table_name}

Valid columns: {columns}

SQL Query:
"""
sql_prompt = PromptTemplate(template=sql_template, input_variables=['question', 'table_name', 'columns'])
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
sql_generation_chain = LLMChain(llm=llm, prompt=sql_prompt)

# Insights Generation Chain
insights_template = """
You are an expert data scientist. Based on the user's question and the SQL query result provided below, generate a concise and informative analysis that includes data insights and actionable recommendations.

User's Question: {question}

SQL Query Result:
{result}

Analysis and Recommendations:
"""
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)

# General Insights and Recommendations Chain
general_insights_template = """
You are an expert data scientist. Based on the entire dataset provided below, generate a comprehensive analysis that includes key insights and actionable recommendations.

Dataset Summary:
{dataset_summary}

Analysis and Recommendations:
"""
general_insights_prompt = PromptTemplate(template=general_insights_template, input_variables=['dataset_summary'])
general_insights_chain = LLMChain(llm=llm, prompt=general_insights_prompt)

# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
def clean_sql_query(query):
    """Removes incorrect usage of COLLATE NOCASE from the SQL query."""
    parsed = sqlparse.parse(query)
    statements = []
    for stmt in parsed:
        tokens = []
        idx = 0
        while idx < len(stmt.tokens):
            token = stmt.tokens[idx]
            if (token.ttype is sqlparse.tokens.Keyword and token.value.upper() == 'COLLATE'):
                # Check if the next token is 'NOCASE'
                next_token = stmt.tokens[idx + 2] if idx + 2 < len(stmt.tokens) else None
                if next_token and next_token.value.upper() == 'NOCASE':
                    # Skip 'COLLATE' and 'NOCASE' tokens
                    idx += 3  # Skip 'COLLATE', whitespace, 'NOCASE'
                    continue
            tokens.append(token)
            idx += 1
        statements.append(''.join([str(t) for t in tokens]))
    return ' '.join(statements)

# Function to classify user query
def classify_query(question):
    """Classify the user query as either 'SQL' or 'INSIGHTS'."""
    classification_template = """
    You are an AI assistant that classifies user queries into two categories: 'SQL' for specific data retrieval queries and 'INSIGHTS' for general analytical or recommendation queries.

    Determine the appropriate category for the following user question.

    Question: "{question}"

    Category (SQL/INSIGHTS):
    """
    classification_prompt = PromptTemplate(template=classification_template, input_variables=['question'])
    classification_chain = LLMChain(llm=llm, prompt=classification_prompt)
    category = classification_chain.run({'question': question}).strip().upper()
    if category.startswith('SQL'):
        return 'SQL'
    else:
        return 'INSIGHTS'

# Function to generate dataset summary
def generate_dataset_summary(data):
    """Generate a summary of the dataset for general insights."""
    summary_template = """
    You are an expert data scientist. Based on the dataset provided below, generate a concise summary that includes the number of records, number of columns, data types, and any notable features.

    Dataset:
    {data}

    Dataset Summary:
    """
    summary_prompt = PromptTemplate(template=summary_template, input_variables=['data'])
    summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
    summary = summary_chain.run({'data': data.head().to_string(index=False)})
    return summary

# Define the callback function
def process_input():
    user_prompt = st.session_state['user_input']

    if user_prompt:
        try:
            # Append user message to history
            st.session_state.history.append({"role": "user", "content": user_prompt})

            # Classify the user query
            category = classify_query(user_prompt)
            logging.info(f"User query classified as: {category}")

            if "COLUMNS" in user_prompt.upper():
                assistant_response = f"The columns are: {', '.join(valid_columns)}"
                st.session_state.history.append({"role": "assistant", "content": assistant_response})
            elif category == 'SQL':
                columns = ', '.join(valid_columns)
                generated_sql = sql_generation_chain.run({
                    'question': user_prompt,
                    'table_name': table_name,
                    'columns': columns
                }).strip()

                if generated_sql.upper() == "NO_SQL":
                    # Handle cases where no SQL should be generated
                    assistant_response = "Sure, let's discuss some general insights and recommendations based on the data."
                    
                    # Generate dataset summary
                    dataset_summary = generate_dataset_summary(data)
                    
                    # Generate general insights and recommendations
                    general_insights = general_insights_chain.run({
                        'dataset_summary': dataset_summary
                    })
                    
                    # Append the assistant's insights to the history
                    st.session_state.history.append({"role": "assistant", "content": general_insights})
                else:
                    # Clean the SQL query
                    cleaned_sql = clean_sql_query(generated_sql)
                    logging.info(f"Generated SQL Query: {cleaned_sql}")

                    # Attempt to execute SQL query and handle exceptions
                    try:
                        result = pd.read_sql_query(cleaned_sql, conn)

                        if result.empty:
                            assistant_response = "The query returned no results. Please try a different question."
                            st.session_state.history.append({"role": "assistant", "content": assistant_response})
                        else:
                            # Convert the result to a string for the insights prompt
                            result_str = result.head(10).to_string(index=False)  # Limit to first 10 rows

                            # Generate insights and recommendations based on the query result
                            insights = insights_chain.run({
                                'question': user_prompt,
                                'result': result_str
                            })

                            # Append the assistant's insights to the history
                            st.session_state.history.append({"role": "assistant", "content": insights})
                            # Append the result DataFrame to the history
                            st.session_state.history.append({"role": "assistant", "content": result})
                    except Exception as e:
                        logging.error(f"An error occurred during SQL execution: {e}")
                        assistant_response = f"Error executing SQL query: {e}"
                        st.session_state.history.append({"role": "assistant", "content": assistant_response})
            else:  # INSIGHTS category
                # Generate dataset summary
                dataset_summary = generate_dataset_summary(data)

                # Generate general insights and recommendations
                general_insights = general_insights_chain.run({
                    'dataset_summary': dataset_summary
                })

                # Append the assistant's insights to the history
                st.session_state.history.append({"role": "assistant", "content": general_insights})
        
        except Exception as e:
            logging.error(f"An error occurred: {e}")
            assistant_response = f"Error: {e}"
            st.session_state.history.append({"role": "assistant", "content": assistant_response})

        # Reset the user_input in session state
        st.session_state['user_input'] = ''

# Display the conversation history
for message in st.session_state.history:
    if message['role'] == 'user':
        st.markdown(f"**User:** {message['content']}")
    elif message['role'] == 'assistant':
        if isinstance(message['content'], pd.DataFrame):
            st.markdown("**Assistant:** Query Results:")
            st.dataframe(message['content'])
        else:
            st.markdown(f"**Assistant:** {message['content']}")

# Place the input field at the bottom with the callback
st.text_input("Enter your message:", key='user_input', on_change=process_input)