File size: 6,141 Bytes
48b0a57 9a138bb 48b0a57 9a138bb 48b0a57 9a138bb 48b0a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import sys
sys.path.append("../")
import torch
import gradio as gr
from omegaconf import OmegaConf
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
from src.utils.setup import seed_everything
from src.utils.logging import print_header
from src.model.pretrained import get_pretrained_loader
from src.model.load_model import load_and_convert_attns, load_and_convert_finetune
def load_model_from_checkpoint(
attn_mlp_checkpoint_path: str = None,
finetune_checkpoint_path: str = None,
model_config_path: str = None,
distill_config_path: str = None,
finetune_config_path: str = None,
config_dir: str = 'configs',
print_model: bool = False,
debug: bool = False,
huggingface_token: str = None,
use_cuda_kernels: bool = False,
use_attention: bool = False
):
is_local = attn_mlp_checkpoint_path.endswith(".pt")
model_config = OmegaConf.load(model_config_path)
distill_config = OmegaConf.load(distill_config_path)
finetune_config = OmegaConf.load(finetune_config_path)
model_loader = get_pretrained_loader(**model_config.model,
huggingface_token=huggingface_token)
tokenizer = model_loader.load_tokenizer()
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
if use_attention:
model = model_loader.load('softmax')
return model, model_config, tokenizer
model = model_loader.load(model_config['attention']['attention_type'])
if use_cuda_kernels:
print('*** Using TK CUDA kernels **')
model_config['attention']['attention_type'] = 'lolcats_llama_window_tk_gen'
if is_local:
checkpoint_path = attn_mlp_checkpoint_path
else:
checkpoint_path = None
model, distill_peft_config = load_and_convert_attns(
model, model_config,
attention_type=None,
checkpoint_path=checkpoint_path,
print_model=debug,
merge_loras=False,
peft_gradient_checkpointing=False,
train_attention=False)
if is_local:
checkpoint_path = attn_mlp_checkpoint_path
else:
checkpoint_path = None
model, ft_peft_config = load_and_convert_finetune(
model, finetune_config,
checkpoint_path=checkpoint_path,
print_model=debug,
merge_loras=False,
peft_gradient_checkpointing=False)
if not is_local:
model = load_hf_weights(
model,
attn_mlp_checkpoint_path, finetune_checkpoint_path,
filename="model.pt"
)
if use_cuda_kernels:
print('*** Using TK CUDA kernels ***')
if print_model:
print('*** Model after checkpoint load ***')
print(model)
return model, model_config, tokenizer
def load_hf_weights(model, distill_repo_id, ft_repo_id, filename="model.pt"):
for repo_id in [distill_repo_id, ft_repo_id]:
if repo_id is None: continue
print(f"Loading weights from {repo_id}")
local_file_path = hf_hub_download(repo_id=repo_id, filename=filename)
state_dict = torch.load(local_file_path)
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
else:
pass
_keys = model.load_state_dict(state_dict, strict=False)
if len(_keys.unexpected_keys) > 0:
new_state_dict = {k.replace('model.', 'model.model.'): v for k, v in state_dict.items()}
_keys = model.load_state_dict(new_state_dict, strict=False)
if len(_keys.unexpected_keys) > 0:
new_state_dict = {k.replace('model.', 'base_model.model.model.'): v for k, v in state_dict.items()}
_keys = model.load_state_dict(new_state_dict, strict=False)
try:
assert len(_keys.unexpected_keys) == 0
print('*** All expected keys matched successfully ***')
except Exception as e:
print(e)
print('*** Error: unexpected keys in checkpoint - please fix ***')
print('Unexpected keys:')
for k in _keys.unexpected_keys:
print(k)
exit()
return model
def load_model_and_tokenizer():
CONFIG_DIR = 'configs' # Update to your path
model_config_path = f"{CONFIG_DIR}/model/distill_llama3_1_8b_lk_smd_wtk64_fd64_w01.yaml"
distill_config_path = f"{CONFIG_DIR}/experiment/distill_alpaca_clean_xent0_mse1000_lr1e-2.yaml"
finetune_config_path = f"{CONFIG_DIR}/experiment/finetune_lora_qkvo_alpaca_clean.yaml"
attn_mlp_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-distill'
finetune_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-ft-lora'
model, model_config, tokenizer = load_model_from_checkpoint(
attn_mlp_checkpoint_path=attn_mlp_checkpoint_path,
finetune_checkpoint_path=finetune_checkpoint_path,
model_config_path=model_config_path,
distill_config_path=distill_config_path,
finetune_config_path=finetune_config_path,
config_dir=CONFIG_DIR,
print_model=False,
debug=False,
huggingface_token=None,
use_cuda_kernels=False,
use_attention=False
)
model = model.to('cuda')
model.eval()
return model, tokenizer
model, tokenizer = load_model_and_tokenizer()
def generate_response(prompt):
all_prompts = [prompt]
with torch.no_grad():
model_input = tokenizer(all_prompts, return_tensors="pt").to(model.device)
model_output = model.generate(
**model_input, use_cache=True,
max_new_tokens=50,
do_sample=False,
top_k=1,
top_p=1.0,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id)
generated_tokens = model_output[0]
input_len = model_input['input_ids'].shape[1]
generated_tokens = generated_tokens[input_len:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="LOLcats Model Demo")
iface.launch() |