File size: 3,296 Bytes
19b10bb
0812f72
19b10bb
09778ba
b80857a
 
fa86cdd
19b10bb
 
b98f522
 
 
 
bf20a09
b98f522
19b10bb
 
 
b80857a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b10bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf20a09
19b10bb
27c1d79
19b10bb
bf20a09
19b10bb
bf20a09
19b10bb
09778ba
19b10bb
09778ba
19b10bb
 
bb3f813
79304a3
19b10bb
bb3f813
09778ba
 
 
 
19b10bb
09778ba
 
27c1d79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
import soundfile as sf
import gradio as gr
import scipy.io.wavfile as wav
import numpy as np
import wave

# Load the TTS model from the Hugging Face Hub
checkpoint = "arham061/speecht5_finetuned_voxpopuli_nl"  # Replace with your actual model name
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
tokenizer = processor.tokenizer
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


# Buckwalter to Unicode mapping
buck2uni = {
            u"\u0627":"A",
            u"\u0627":"A",
            u"\u0675":"A",
            u"\u0673":"A",
            u"\u0630":"A",
            u"\u0622":"AA",
            u"\u0628":"B",
            u"\u067E":"P",
            u"\u062A":"T",
            u"\u0637":"T",
            u"\u0679":"T",
            u"\u062C":"J",
            u"\u0633":"S",
            u"\u062B":"S",
            u"\u0635":"S",
            u"\u0686":"CH",
            u"\u062D":"H",
            u"\u0647":"H",
            u"\u0629":"H",
            u"\u06DF":"H",
            u"\u062E":"KH",
            u"\u062F":"D",
            u"\u0688":"D",
            u"\u0630":"Z",
            u"\u0632":"Z",
            u"\u0636":"Z",
            u"\u0638":"Z",
            u"\u068E":"Z",
            u"\u0631":"R",
            u"\u0691":"R",
            u"\u0634":"SH",
            u"\u063A":"GH",
            u"\u0641":"F",
            u"\u06A9":"K",
            u"\u0642":"K",
            u"\u06AF":"G",
            u"\u0644":"L",
            u"\u0645":"M",
            u"\u0646":"N",
            u"\u06BA":"N",
            u"\u0648":"O",
            u"\u0649":"Y",
            u"\u0626":"Y",
            u"\u06CC":"Y",
            u"\u06D2":"E",
            u"\u06C1":"H",
            u"\u064A":"E"  ,
            u"\u06C2":"AH"  ,
            u"\u06BE":"H"  ,
            u"\u0639":"A"  ,
            u"\u0643":"K" ,
            u"\u0621":"A",
            u"\u0624":"O",
            u"\u060C":"" #seperator ulta comma
}

def transString(string, reverse=0):
    """Given a Unicode string, transliterate into Buckwalter. To go from
    Buckwalter back to Unicode, set reverse=1"""
    for k, v in buck2uni.items():
        if not reverse:
            string = string.replace(k, v)
        else:
            string = string.replace(v, k)
    return string


def generate_audio(text):
    # Convert input text to Roman Urdu
    roman_urdu = transString(text)

    # Tokenize the input text
    inputs = tokenizer(roman_urdu, return_tensors="pt")

    # Generate audio from the SpeechT5 model
    with torch.no_grad():
        speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

    return speech

def text_to_speech(text):
    # Generate audio
    audio_output = generate_audio(text)

    # Save audio as a .wav file
    output_path = "output.wav"
    sf.write(output_path, audio_output, 16000, 'PCM_16')

    return output_path

# Define the Gradio interface
inputs = gr.inputs.Textbox(label="Enter text in Urdu")
outputs = gr.outputs.Audio(label="Audio")

interface = gr.Interface(fn=text_to_speech, inputs=inputs, outputs=outputs, title="Urdu TTS")
interface.launch()