File size: 72,435 Bytes
3c22569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "8JqpxyBueqTH",
        "outputId": "6c2c3908-9067-496c-ad64-74f21895232a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "  Building wheel for flashtext (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting git+https://github.com/boudinfl/pke.git\n",
            "  Cloning https://github.com/boudinfl/pke.git to /tmp/pip-req-build-s0vst_dk\n",
            "  Running command git clone -q https://github.com/boudinfl/pke.git /tmp/pip-req-build-s0vst_dk\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (3.7)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (2.6.3)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.21.6)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.7.3)\n",
            "Collecting sklearn\n",
            "  Downloading sklearn-0.0.post1.tar.gz (3.6 kB)\n",
            "Collecting unidecode\n",
            "  Downloading Unidecode-1.3.6-py3-none-any.whl (235 kB)\n",
            "\u001b[K     |████████████████████████████████| 235 kB 6.2 MB/s \n",
            "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (0.16.0)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.2.0)\n",
            "Requirement already satisfied: spacy>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (3.4.3)\n",
            "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.0.7)\n",
            "Requirement already satisfied: typing-extensions<4.2.0,>=3.7.4 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (4.1.1)\n",
            "Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.0.3)\n",
            "Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (57.4.0)\n",
            "Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.0.10)\n",
            "Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.10.1)\n",
            "Requirement already satisfied: typer<0.8.0,>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.7.0)\n",
            "Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (8.1.5)\n",
            "Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.4.5)\n",
            "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.0.8)\n",
            "Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (4.64.1)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (21.3)\n",
            "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.0.9)\n",
            "Requirement already satisfied: pathy>=0.3.5 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.8.1)\n",
            "Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.10.2)\n",
            "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.23.0)\n",
            "Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.3.0)\n",
            "Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.0.8)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.11.3)\n",
            "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from catalogue<2.1.0,>=2.0.6->spacy>=3.2.3->pke==2.0.0) (3.10.0)\n",
            "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->spacy>=3.2.3->pke==2.0.0) (3.0.9)\n",
            "Requirement already satisfied: smart-open<6.0.0,>=5.2.1 in /usr/local/lib/python3.7/dist-packages (from pathy>=0.3.5->spacy>=3.2.3->pke==2.0.0) (5.2.1)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (2.10)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (2022.9.24)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (3.0.4)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (1.24.3)\n",
            "Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.7/dist-packages (from thinc<8.2.0,>=8.1.0->spacy>=3.2.3->pke==2.0.0) (0.0.3)\n",
            "Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.7/dist-packages (from thinc<8.2.0,>=8.1.0->spacy>=3.2.3->pke==2.0.0) (0.7.9)\n",
            "Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.7/dist-packages (from typer<0.8.0,>=0.3.0->spacy>=3.2.3->pke==2.0.0) (7.1.2)\n",
            "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->spacy>=3.2.3->pke==2.0.0) (2.0.1)\n",
            "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.7/dist-packages (from nltk->pke==2.0.0) (2022.6.2)\n",
            "Building wheels for collected packages: pke, sklearn\n",
            "  Building wheel for pke (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pke: filename=pke-2.0.0-py3-none-any.whl size=6160276 sha256=6967c9216d570e0bbc7bab2c16f5f1810ecd62dcc9fad636e26ff35edbab3a68\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-_mu5g7sn/wheels/fa/b3/09/612ee93bf3ee4164bcd5783e742942cdfc892a86039d3e0a33\n",
            "  Building wheel for sklearn (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sklearn: filename=sklearn-0.0.post1-py3-none-any.whl size=2344 sha256=47f5287c3e5d1518e0617e1db17d093069e553338d6c0e359aa70352e6c78d66\n",
            "  Stored in directory: /root/.cache/pip/wheels/42/56/cc/4a8bf86613aafd5b7f1b310477667c1fca5c51c3ae4124a003\n",
            "Successfully built pke sklearn\n",
            "Installing collected packages: unidecode, sklearn, pke\n",
            "Successfully installed pke-2.0.0 sklearn-0.0.post1 unidecode-1.3.6\n"
          ]
        }
      ],
      "source": [
        "!pip install --quiet flashtext==2.7\n",
        "!pip install git+https://github.com/boudinfl/pke.git\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "am3XUlr5evYK"
      },
      "outputs": [],
      "source": [
        "!pip install --quiet transformers==4.8.1\n",
        "!pip install --quiet sentencepiece==0.1.95\n",
        "!pip install --quiet textwrap3==0.9.2\n",
        "!pip install  gradio"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "mhwpLyuBfFUK",
        "outputId": "dc6f4900-429d-4815-c98c-b8625efcbe7b"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[?25l\r\u001b[K     |███████▊                        | 10 kB 27.7 MB/s eta 0:00:01\r\u001b[K     |███████████████▌                | 20 kB 34.6 MB/s eta 0:00:01\r\u001b[K     |███████████████████████▏        | 30 kB 15.4 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████ | 40 kB 6.6 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 42 kB 955 kB/s \n",
            "\u001b[?25h"
          ]
        }
      ],
      "source": [
        "!pip install --quiet strsim==0.0.3\n",
        "!pip install --quiet sense2vec==2.0.0"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "NcNXz17EfQLJ",
        "outputId": "c90851f7-e320-48e3-d994-fcc5c174c636"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[?25l\r\u001b[K     |▏                               | 10 kB 10.5 MB/s eta 0:00:01\r\u001b[K     |▍                               | 20 kB 7.8 MB/s eta 0:00:01\r\u001b[K     |▋                               | 30 kB 11.1 MB/s eta 0:00:01\r\u001b[K     |▉                               | 40 kB 6.3 MB/s eta 0:00:01\r\u001b[K     |█                               | 51 kB 6.3 MB/s eta 0:00:01\r\u001b[K     |█▎                              | 61 kB 7.4 MB/s eta 0:00:01\r\u001b[K     |█▌                              | 71 kB 7.9 MB/s eta 0:00:01\r\u001b[K     |█▊                              | 81 kB 8.7 MB/s eta 0:00:01\r\u001b[K     |█▉                              | 92 kB 8.7 MB/s eta 0:00:01\r\u001b[K     |██                              | 102 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██▎                             | 112 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██▌                             | 122 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██▊                             | 133 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███                             | 143 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███▏                            | 153 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███▍                            | 163 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███▌                            | 174 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███▊                            | 184 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████                            | 194 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████▏                           | 204 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████▍                           | 215 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████▋                           | 225 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████▉                           | 235 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████                           | 245 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████▎                          | 256 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████▍                          | 266 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████▋                          | 276 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████▉                          | 286 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████                          | 296 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████▎                         | 307 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████▌                         | 317 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████▊                         | 327 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████                         | 337 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████                         | 348 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████▎                        | 358 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████▌                        | 368 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████▊                        | 378 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████                        | 389 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████▏                       | 399 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████▍                       | 409 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████▋                       | 419 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████▊                       | 430 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████                       | 440 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████▏                      | 450 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████▍                      | 460 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████▋                      | 471 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████▉                      | 481 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████                      | 491 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████▎                     | 501 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████▌                     | 512 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████▋                     | 522 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████▉                     | 532 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████                     | 542 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████▎                    | 552 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████▌                    | 563 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████▊                    | 573 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████                    | 583 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████▏                   | 593 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████▎                   | 604 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████▌                   | 614 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████▊                   | 624 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████                   | 634 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████▏                  | 645 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████▍                  | 655 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████▋                  | 665 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████▉                  | 675 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████                  | 686 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████▏                 | 696 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████▍                 | 706 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████▋                 | 716 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████▉                 | 727 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████                 | 737 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████▎                | 747 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████▌                | 757 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████▊                | 768 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████▉                | 778 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████                | 788 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████▎               | 798 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████▌               | 808 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████▊               | 819 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████               | 829 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████▏              | 839 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████▍              | 849 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████▌              | 860 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████▊              | 870 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████              | 880 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████▏             | 890 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████▍             | 901 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████▋             | 911 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████▉             | 921 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████             | 931 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████▎            | 942 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████▍            | 952 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████▋            | 962 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████▉            | 972 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████            | 983 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████▎           | 993 kB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████▌           | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████▊           | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████           | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████           | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████▎          | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████▌          | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████▊          | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████          | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████▏         | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████▍         | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████▋         | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████▊         | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████         | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████▏        | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████▍        | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████▋        | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████▉        | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████        | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████▎       | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████▌       | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████▋       | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████▉       | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████       | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████▎      | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████▌      | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████▊      | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████      | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████▏     | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████▎     | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████▌     | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████▊     | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████     | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████▏    | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████▍    | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████▋    | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████▉    | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████    | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▏   | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▍   | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▋   | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▉   | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████████   | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████████▎  | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████████▌  | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████████▊  | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |█████████████████████████████▉  | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████████  | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████████▎ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████████▌ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |██████████████████████████████▊ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████▏| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████▍| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████▌| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |███████████████████████████████▊| 1.6 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 1.6 MB 7.5 MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 1.6 MB 7.5 MB/s \n",
            "\u001b[?25htime: 506 µs (started: 2022-11-24 06:06:09 +00:00)\n"
          ]
        }
      ],
      "source": [
        "!pip install --quiet ipython-autotime\n",
        "%load_ext autotime"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "Bijc_hfbfUwp",
        "outputId": "54a7f895-8f08-452d-8f3a-8e5310a1aa6c"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[K     |████████████████████████████████| 85 kB 3.9 MB/s \n",
            "\u001b[K     |████████████████████████████████| 182 kB 49.1 MB/s \n",
            "\u001b[K     |████████████████████████████████| 5.5 MB 54.9 MB/s \n",
            "\u001b[K     |████████████████████████████████| 7.6 MB 55.0 MB/s \n",
            "\u001b[?25h  Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "time: 10.4 s (started: 2022-11-24 06:06:09 +00:00)\n"
          ]
        }
      ],
      "source": [
        "!pip install --quiet sentence-transformers==2.2.2"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bmVx9L0yfgvR"
      },
      "source": [
        "The below code restarts the colab notebook. Once it is restarted continue from next section and no need to run this section (installation) again."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "uPO9U__1fZWh",
        "outputId": "31e8d745-2a88-4bd6-f136-55cd2147ee3f"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "time: 556 µs (started: 2022-11-24 06:06:20 +00:00)\n"
          ]
        }
      ],
      "source": [
        "# import os\n",
        "# os.kill(os.getpid(), 9)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "POh2_zvgrk0h"
      },
      "source": [
        "## Example 1"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VJP4CDBBrnNY"
      },
      "source": [
        "Text taken from: \n",
        "https://gadgets.ndtv.com/internet/news/dogecoin-price-rally-surge-elon-musk-tweet-twitter-working-developers-improve-transaction-efficiency-2442120"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "P_jlw7MUfjOp",
        "outputId": "fd3e08da-3595-445d-941f-2c8047e34f08"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
            "Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
            "system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
            "rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin.  In a recent tweet,\n",
            "Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
            "transaction, and hence was suspending vehicle purchases using the cryptocurrency.  A day later he again tweeted saying, “To be clear, I strongly\n",
            "believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”.  It triggered a downward spiral for Bitcoin value but\n",
            "the cryptocurrency has stabilised since.   A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
            "that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\n",
            "\n",
            "\n",
            "time: 18.8 ms (started: 2022-11-24 06:06:20 +00:00)\n"
          ]
        }
      ],
      "source": [
        "from textwrap3 import wrap\n",
        "\n",
        "text = \"\"\"Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
        "Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
        "system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
        "rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin.  In a recent tweet,\n",
        "Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
        "transaction, and hence was suspending vehicle purchases using the cryptocurrency.  A day later he again tweeted saying, “To be clear, I strongly\n",
        "believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”.  It triggered a downward spiral for Bitcoin value but\n",
        "the cryptocurrency has stabilised since.   A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
        "that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\"\"\"\n",
        "\n",
        "for wrp in wrap(text, 150):\n",
        "  print (wrp)\n",
        "print (\"\\n\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ShPNEZz8u7s6"
      },
      "source": [
        "# **Summarization with T5**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true,
          "referenced_widgets": [
            "c9c2e5d5824345f780befcf11d6ff946",
            "c39b4e7e424d4f64a8fb25495f8c7026",
            "543714c7a41a4429a57a069bc2eca1dc"
          ]
        },
        "id": "H1eIU521rrn5",
        "outputId": "d3bb1402-1cba-4881-b05f-b8e24bb19278"
      },
      "outputs": [
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "c9c2e5d5824345f780befcf11d6ff946",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/1.20k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "c39b4e7e424d4f64a8fb25495f8c7026",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/892M [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "543714c7a41a4429a57a069bc2eca1dc",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/792k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.7/dist-packages/transformers/models/t5/tokenization_t5.py:174: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
            "For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
            "- Be aware that you SHOULD NOT rely on t5-base automatically truncating your input to 512 when padding/encoding.\n",
            "- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
            "- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
            "  FutureWarning,\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "time: 30.6 s (started: 2022-11-24 06:06:20 +00:00)\n"
          ]
        }
      ],
      "source": [
        "import torch\n",
        "from transformers import T5ForConditionalGeneration,T5Tokenizer\n",
        "summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')\n",
        "summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')\n",
        "\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "summary_model = summary_model.to(device)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "8mVsjMPTu-bj",
        "outputId": "e0ac198d-4625-4f8f-a2fd-9968c0a5a72d"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "time: 1.03 ms (started: 2022-11-24 06:06:50 +00:00)\n"
          ]
        }
      ],
      "source": [
        "import random\n",
        "import numpy as np\n",
        "\n",
        "def set_seed(seed: int):\n",
        "    random.seed(seed)\n",
        "    np.random.seed(seed)\n",
        "    torch.manual_seed(seed)\n",
        "    torch.cuda.manual_seed_all(seed)\n",
        "\n",
        "set_seed(42)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "Gh2Xc5JRvQDp",
        "outputId": "c1198166-2a2b-4571-b831-3ed1a8705c9e"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Unzipping tokenizers/punkt.zip.\n",
            "[nltk_data] Downloading package brown to /root/nltk_data...\n",
            "[nltk_data]   Unzipping corpora/brown.zip.\n",
            "[nltk_data] Downloading package wordnet to /root/nltk_data...\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\n",
            "original Text >>\n",
            "Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
            "Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
            "system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
            "rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin.  In a recent tweet,\n",
            "Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
            "transaction, and hence was suspending vehicle purchases using the cryptocurrency.  A day later he again tweeted saying, “To be clear, I strongly\n",
            "believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”.  It triggered a downward spiral for Bitcoin value but\n",
            "the cryptocurrency has stabilised since.   A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
            "that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\n",
            "\n",
            "\n",
            "Summarized Text >>\n",
            "Musk tweeted that his electric vehicle-making company tesla will not accept payments in bitcoin because of environmental concerns. He also said that\n",
            "the company was working with developers of dogecoin to improve system transaction efficiency. The world's largest cryptocurrency hit a two-month low,\n",
            "while doge coin rallied by about 20 percent. Musk has in recent months often tweeted in support of crypto, but rarely for bitcoin.\n",
            "\n",
            "\n",
            "time: 6.14 s (started: 2022-11-24 06:06:50 +00:00)\n"
          ]
        }
      ],
      "source": [
        "import nltk\n",
        "nltk.download('punkt')\n",
        "nltk.download('brown')\n",
        "nltk.download('wordnet')\n",
        "from nltk.corpus import wordnet as wn\n",
        "from nltk.tokenize import sent_tokenize\n",
        "\n",
        "def postprocesstext (content):\n",
        "  final=\"\"\n",
        "  for sent in sent_tokenize(content):\n",
        "    sent = sent.capitalize()\n",
        "    final = final +\" \"+sent\n",
        "  return final\n",
        "\n",
        "\n",
        "def summarizer(text,model,tokenizer):\n",
        "  text = text.strip().replace(\"\\n\",\" \")\n",
        "  text = \"summarize: \"+text\n",
        "  # print (text)\n",
        "  max_len = 512\n",
        "  encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors=\"pt\").to(device)\n",
        "\n",
        "  input_ids, attention_mask = encoding[\"input_ids\"], encoding[\"attention_mask\"]\n",
        "\n",
        "  outs = model.generate(input_ids=input_ids,\n",
        "                                  attention_mask=attention_mask,\n",
        "                                  early_stopping=True,\n",
        "                                  num_beams=3,\n",
        "                                  num_return_sequences=1,\n",
        "                                  no_repeat_ngram_size=2,\n",
        "                                  min_length = 75,\n",
        "                                  max_length=300)\n",
        "\n",
        "\n",
        "  dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]\n",
        "  summary = dec[0]\n",
        "  summary = postprocesstext(summary)\n",
        "  summary= summary.strip()\n",
        "\n",
        "  return summary\n",
        "\n",
        "\n",
        "summarized_text = summarizer(text,summary_model,summary_tokenizer)\n",
        "\n",
        "\n",
        "print (\"\\noriginal Text >>\")\n",
        "for wrp in wrap(text, 150):\n",
        "  print (wrp)\n",
        "print (\"\\n\")\n",
        "print (\"Summarized Text >>\")\n",
        "for wrp in wrap(summarized_text, 150):\n",
        "  print (wrp)\n",
        "print (\"\\n\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "JvBHu5eXv_wp"
      },
      "source": [
        "# **Answer Span Extraction (Keywords and Noun Phrases)**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "84DxJGFn4MfD",
        "outputId": "27c39b58-dcaa-4b92-ff9e-0da292be34d9"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
            "[nltk_data]   Unzipping corpora/stopwords.zip.\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "time: 8.23 s (started: 2022-11-24 06:06:56 +00:00)\n"
          ]
        }
      ],
      "source": [
        "import nltk\n",
        "nltk.download('stopwords')\n",
        "from nltk.corpus import stopwords\n",
        "import string\n",
        "import pke\n",
        "import traceback\n",
        "\n",
        "def get_nouns_multipartite(content):\n",
        "    out=[]\n",
        "    try:\n",
        "        extractor = pke.unsupervised.MultipartiteRank()\n",
        "        extractor.load_document(input=content,language='en')\n",
        "        #    not contain punctuation marks or stopwords as candidates.\n",
        "        pos = {'PROPN','NOUN'}\n",
        "        #pos = {'PROPN','NOUN'}\n",
        "        stoplist = list(string.punctuation)\n",
        "        stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']\n",
        "        stoplist += stopwords.words('english')\n",
        "        # extractor.candidate_selection(pos=pos, stoplist=stoplist)\n",
        "        extractor.candidate_selection(pos=pos)\n",
        "        # 4. build the Multipartite graph and rank candidates using random walk,\n",
        "        #    alpha controls the weight adjustment mechanism, see TopicRank for\n",
        "        #    threshold/method parameters.\n",
        "        extractor.candidate_weighting(alpha=1.1,\n",
        "                                      threshold=0.75,\n",
        "                                      method='average')\n",
        "        keyphrases = extractor.get_n_best(n=15)\n",
        "        \n",
        "\n",
        "        for val in keyphrases:\n",
        "            out.append(val[0])\n",
        "    except:\n",
        "        out = []\n",
        "        traceback.print_exc()\n",
        "\n",
        "    return out"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "E8LNRzDVwDbp",
        "outputId": "c2ae2bda-8250-4e82-ed71-d10568251e68"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "keywords unsummarized:  ['elon musk', 'dogecoin', 'bitcoin', 'statements', 'use', 'cryptocurrency', 'tesla', 'tweets', 'musk', 'system transaction efficiency', 'currency market', 'world', 'price', 'payments', 'company']\n",
            "keywords_found in summarized:  ['world', 'dogecoin', 'musk', 'cryptocurrency', 'system transaction efficiency', 'payments', 'company', 'bitcoin', 'tesla']\n",
            "['dogecoin', 'bitcoin', 'cryptocurrency', 'tesla', 'musk', 'system transaction efficiency', 'world', 'payments', 'company']\n",
            "time: 785 ms (started: 2022-11-24 06:07:05 +00:00)\n"
          ]
        }
      ],
      "source": [
        "from flashtext import KeywordProcessor\n",
        "\n",
        "\n",
        "def get_keywords(originaltext,summarytext):\n",
        "  keywords = get_nouns_multipartite(originaltext)\n",
        "  print (\"keywords unsummarized: \",keywords)\n",
        "  keyword_processor = KeywordProcessor()\n",
        "  for keyword in keywords:\n",
        "    keyword_processor.add_keyword(keyword)\n",
        "\n",
        "  keywords_found = keyword_processor.extract_keywords(summarytext)\n",
        "  keywords_found = list(set(keywords_found))\n",
        "  print (\"keywords_found in summarized: \",keywords_found)\n",
        "\n",
        "  important_keywords =[]\n",
        "  for keyword in keywords:\n",
        "    if keyword in keywords_found:\n",
        "      important_keywords.append(keyword)\n",
        "\n",
        "  return important_keywords[:10]\n",
        "\n",
        "\n",
        "imp_keywords = get_keywords(text,summarized_text)\n",
        "print (imp_keywords)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true,
          "referenced_widgets": [
            "24334ddee9f74d3c82a575f0edbc8720",
            "c884156893794fa6bad4171a9aacbd2f",
            "2f0d8bf7b60a423383ae6ab2469106eb",
            "70c932999b0f4dcda0525b9a81ceabf3",
            "7897cc69283d475694042ed9cbc6e92c"
          ]
        },
        "id": "m44RM44OwGzR",
        "outputId": "ca45cae8-a813-4425-9adc-3d8e0f886324"
      },
      "outputs": [
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "24334ddee9f74d3c82a575f0edbc8720",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/1.21k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "c884156893794fa6bad4171a9aacbd2f",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/892M [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "2f0d8bf7b60a423383ae6ab2469106eb",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/792k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "70c932999b0f4dcda0525b9a81ceabf3",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/1.79k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "7897cc69283d475694042ed9cbc6e92c",
              "version_major": 2,
              "version_minor": 0
            },
            "text/plain": [
              "Downloading:   0%|          | 0.00/1.86k [00:00<?, ?B/s]"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "time: 35.2 s (started: 2022-11-24 06:07:05 +00:00)\n"
          ]
        }
      ],
      "source": [
        "question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')\n",
        "question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')\n",
        "question_model = question_model.to(device)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "1usLabLu5DUB",
        "outputId": "69d364b6-ee46-46d2-ee22-19b1fe5b2411"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Musk tweeted that his electric vehicle-making company tesla will not accept payments in bitcoin because of environmental concerns. He also said that\n",
            "the company was working with developers of dogecoin to improve system transaction efficiency. The world's largest cryptocurrency hit a two-month low,\n",
            "while doge coin rallied by about 20 percent. Musk has in recent months often tweeted in support of crypto, but rarely for bitcoin.\n",
            "\n",
            "\n",
            "What did Musk say he was working with to improve system transaction efficiency?\n",
            "Dogecoin\n",
            "\n",
            "\n",
            "What cryptocurrency did Musk rarely tweet about?\n",
            "Bitcoin\n",
            "\n",
            "\n",
            "What has Musk often tweeted in support of?\n",
            "Cryptocurrency\n",
            "\n",
            "\n",
            "What company did Musk say would not accept bitcoin payments?\n",
            "Tesla\n",
            "\n",
            "\n",
            "Who said tesla would not accept bitcoin payments?\n",
            "Musk\n",
            "\n",
            "\n",
            "What did Musk want to improve with dogecoin?\n",
            "System transaction efficiency\n",
            "\n",
            "\n",
            "What is the largest cryptocurrency?\n",
            "World\n",
            "\n",
            "\n",
            "What did Musk say his company would not accept in bitcoin?\n",
            "Payments\n",
            "\n",
            "\n",
            "What did Musk say was working with dogecoin developers?\n",
            "Company\n",
            "\n",
            "\n",
            "time: 2.78 s (started: 2022-11-24 06:07:41 +00:00)\n"
          ]
        }
      ],
      "source": [
        "def get_question(context,answer,model,tokenizer):\n",
        "  text = \"context: {} answer: {}\".format(context,answer)\n",
        "  encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors=\"pt\").to(device)\n",
        "  input_ids, attention_mask = encoding[\"input_ids\"], encoding[\"attention_mask\"]\n",
        "\n",
        "  outs = model.generate(input_ids=input_ids,\n",
        "                                  attention_mask=attention_mask,\n",
        "                                  early_stopping=True,\n",
        "                                  num_beams=5,\n",
        "                                  num_return_sequences=1,\n",
        "                                  no_repeat_ngram_size=2,\n",
        "                                  max_length=72)\n",
        "\n",
        "\n",
        "  dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]\n",
        "\n",
        "\n",
        "  Question = dec[0].replace(\"question:\",\"\")\n",
        "  Question= Question.strip()\n",
        "  return Question\n",
        "\n",
        "\n",
        "\n",
        "for wrp in wrap(summarized_text, 150):\n",
        "  print (wrp)\n",
        "print (\"\\n\")\n",
        "\n",
        "for answer in imp_keywords:\n",
        "  ques = get_question(summarized_text,answer,question_model,question_tokenizer)\n",
        "  print (ques)\n",
        "  print (answer.capitalize())\n",
        "  print (\"\\n\")\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4kEuH__G6oDK",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 740
        },
        "outputId": "8a8b7911-1e79-403e-9601-6f7221fc8bd7"
      },
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.7/dist-packages/gradio/inputs.py:27: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
            "  \"Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\",\n",
            "/usr/local/lib/python3.7/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
            "  warnings.warn(value)\n",
            "/usr/local/lib/python3.7/dist-packages/gradio/deprecation.py:40: UserWarning: `numeric` parameter is deprecated, and it has no effect\n",
            "  warnings.warn(value)\n"
          ]
        },
        {
          "metadata": {
            "tags": null
          },
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
            "Note: opening Chrome Inspector may crash demo inside Colab notebooks.\n",
            "\n",
            "To create a public link, set `share=True` in `launch()`.\n"
          ]
        },
        {
          "data": {
            "application/javascript": [
              "(async (port, path, width, height, cache, element) => {\n",
              "                        if (!google.colab.kernel.accessAllowed && !cache) {\n",
              "                            return;\n",
              "                        }\n",
              "                        element.appendChild(document.createTextNode(''));\n",
              "                        const url = await google.colab.kernel.proxyPort(port, {cache});\n",
              "\n",
              "                        const external_link = document.createElement('div');\n",
              "                        external_link.innerHTML = `\n",
              "                            <div style=\"font-family: monospace; margin-bottom: 0.5rem\">\n",
              "                                Running on <a href=${new URL(path, url).toString()} target=\"_blank\">\n",
              "                                    https://localhost:${port}${path}\n",
              "                                </a>\n",
              "                            </div>\n",
              "                        `;\n",
              "                        element.appendChild(external_link);\n",
              "\n",
              "                        const iframe = document.createElement('iframe');\n",
              "                        iframe.src = new URL(path, url).toString();\n",
              "                        iframe.height = height;\n",
              "                        iframe.allow = \"autoplay; camera; microphone; clipboard-read; clipboard-write;\"\n",
              "                        iframe.width = width;\n",
              "                        iframe.style.border = 0;\n",
              "                        element.appendChild(iframe);\n",
              "                    })(7860, \"/\", \"100%\", 500, false, window.element)"
            ],
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "import gradio as gr\n",
        "\n",
        "context = gr.inputs.Textbox(lines=10, placeholder=\"Enter paragraph/content here...\")\n",
        "output = gr.outputs.HTML(  label=\"Question and Answers\")\n",
        "\n",
        "\n",
        "def generate_question(context):\n",
        "  summary_text = summarizer(context,summary_model,summary_tokenizer)\n",
        "  for wrp in wrap(summary_text, 150):\n",
        "    print (wrp)\n",
        "  np =  get_keywords(context,summary_text)\n",
        "  print (\"\\n\\nNoun phrases\",np)\n",
        "  output=\"\"\n",
        "  for answer in np:\n",
        "    ques = get_question(summary_text,answer,question_model,question_tokenizer)\n",
        "    # output= output + ques + \"\\n\" + \"Ans: \"+answer.capitalize() + \"\\n\\n\"\n",
        "    output = output + \"<b style='color:blue;'>\" + ques + \"</b>\"\n",
        "    output = output + \"<br>\"\n",
        "    output = output + \"<b style='color:green;'>\" + \"Ans: \" +answer.capitalize()+  \"</b>\"\n",
        "    output = output + \"<br>\"\n",
        "\n",
        "  summary =\"Summary: \"+ summary_text\n",
        "  for answer in np:\n",
        "    summary = summary.replace(answer,\"<b>\"+answer+\"</b>\")\n",
        "    summary = summary.replace(answer.capitalize(),\"<b>\"+answer.capitalize()+\"</b>\")\n",
        "  output = output + \"<p>\"+summary+\"</p>\"\n",
        "  \n",
        "  return output\n",
        "\n",
        "iface = gr.Interface(\n",
        "  fn=generate_question, \n",
        "  inputs=context, \n",
        "  outputs=output)\n",
        "iface.launch(debug=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dNmJx7QNfLcy"
      },
      "source": [
        "# **Filter keywords with Maximum marginal Relevance**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "zPBj-IUL7L8x"
      },
      "outputs": [],
      "source": [
        "!wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz\n",
        "!tar -xvf  s2v_reddit_2015_md.tar.gz"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "s5RI3fk9fOOz"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "from sense2vec import Sense2Vec\n",
        "s2v = Sense2Vec().from_disk('s2v_old')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "J2y3unpvfo1y"
      },
      "outputs": [],
      "source": [
        "from sentence_transformers import SentenceTransformer\n",
        "# paraphrase-distilroberta-base-v1\n",
        "sentence_transformer_model = SentenceTransformer('msmarco-distilbert-base-v3')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "pvfmhuWVfsJb"
      },
      "outputs": [],
      "source": [
        "from similarity.normalized_levenshtein import NormalizedLevenshtein\n",
        "normalized_levenshtein = NormalizedLevenshtein()\n",
        "\n",
        "def filter_same_sense_words(original,wordlist):\n",
        "  filtered_words=[]\n",
        "  base_sense =original.split('|')[1] \n",
        "  print (base_sense)\n",
        "  for eachword in wordlist:\n",
        "    if eachword[0].split('|')[1] == base_sense:\n",
        "      filtered_words.append(eachword[0].split('|')[0].replace(\"_\", \" \").title().strip())\n",
        "  return filtered_words\n",
        "\n",
        "def get_highest_similarity_score(wordlist,wrd):\n",
        "  score=[]\n",
        "  for each in wordlist:\n",
        "    score.append(normalized_levenshtein.similarity(each.lower(),wrd.lower()))\n",
        "  return max(score)\n",
        "\n",
        "def sense2vec_get_words(word,s2v,topn,question):\n",
        "    output = []\n",
        "    print (\"word \",word)\n",
        "    try:\n",
        "      sense = s2v.get_best_sense(word, senses= [\"NOUN\", \"PERSON\",\"PRODUCT\",\"LOC\",\"ORG\",\"EVENT\",\"NORP\",\"WORK OF ART\",\"FAC\",\"GPE\",\"NUM\",\"FACILITY\"])\n",
        "      most_similar = s2v.most_similar(sense, n=topn)\n",
        "      # print (most_similar)\n",
        "      output = filter_same_sense_words(sense,most_similar)\n",
        "      print (\"Similar \",output)\n",
        "    except:\n",
        "      output =[]\n",
        "\n",
        "    threshold = 0.6\n",
        "    final=[word]\n",
        "    checklist =question.split()\n",
        "    for x in output:\n",
        "      if get_highest_similarity_score(final,x)<threshold and x not in final and x not in checklist:\n",
        "        final.append(x)\n",
        "    \n",
        "    return final[1:]\n",
        "\n",
        "def mmr(doc_embedding, word_embeddings, words, top_n, lambda_param):\n",
        "\n",
        "    # Extract similarity within words, and between words and the document\n",
        "    word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)\n",
        "    word_similarity = cosine_similarity(word_embeddings)\n",
        "\n",
        "    # Initialize candidates and already choose best keyword/keyphrase\n",
        "    keywords_idx = [np.argmax(word_doc_similarity)]\n",
        "    candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]\n",
        "\n",
        "    for _ in range(top_n - 1):\n",
        "        # Extract similarities within candidates and\n",
        "        # between candidates and selected keywords/phrases\n",
        "        candidate_similarities = word_doc_similarity[candidates_idx, :]\n",
        "        target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)\n",
        "\n",
        "        # Calculate MMR\n",
        "        mmr = (lambda_param) * candidate_similarities - (1-lambda_param) * target_similarities.reshape(-1, 1)\n",
        "        mmr_idx = candidates_idx[np.argmax(mmr)]\n",
        "\n",
        "        # Update keywords & candidates\n",
        "        keywords_idx.append(mmr_idx)\n",
        "        candidates_idx.remove(mmr_idx)\n",
        "\n",
        "    return [words[idx] for idx in keywords_idx]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "UCN0-kXEfxwy"
      },
      "outputs": [],
      "source": [
        "from collections import OrderedDict\n",
        "from sklearn.metrics.pairwise import cosine_similarity\n",
        "import nltk\n",
        "nltk.download('omw-1.4')\n",
        "\n",
        "def get_distractors_wordnet(word):\n",
        "    distractors=[]\n",
        "    try:\n",
        "      syn = wn.synsets(word,'n')[0]\n",
        "      \n",
        "      word= word.lower()\n",
        "      orig_word = word\n",
        "      if len(word.split())>0:\n",
        "          word = word.replace(\" \",\"_\")\n",
        "      hypernym = syn.hypernyms()\n",
        "      if len(hypernym) == 0: \n",
        "          return distractors\n",
        "      for item in hypernym[0].hyponyms():\n",
        "          name = item.lemmas()[0].name()\n",
        "          #print (\"name \",name, \" word\",orig_word)\n",
        "          if name == orig_word:\n",
        "              continue\n",
        "          name = name.replace(\"_\",\" \")\n",
        "          name = \" \".join(w.capitalize() for w in name.split())\n",
        "          if name is not None and name not in distractors:\n",
        "              distractors.append(name)\n",
        "    except:\n",
        "      print (\"Wordnet distractors not found\")\n",
        "    return distractors\n",
        "\n",
        "def get_distractors (word,origsentence,sense2vecmodel,sentencemodel,top_n,lambdaval):\n",
        "  distractors = sense2vec_get_words(word,sense2vecmodel,top_n,origsentence)\n",
        "  print (\"distractors \",distractors)\n",
        "  if len(distractors) ==0:\n",
        "    return distractors\n",
        "  distractors_new = [word.capitalize()]\n",
        "  distractors_new.extend(distractors)\n",
        "  # print (\"distractors_new .. \",distractors_new)\n",
        "\n",
        "  embedding_sentence = origsentence+ \" \"+word.capitalize()\n",
        "  # embedding_sentence = word\n",
        "  keyword_embedding = sentencemodel.encode([embedding_sentence])\n",
        "  distractor_embeddings = sentencemodel.encode(distractors_new)\n",
        "\n",
        "  # filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors,4,0.7)\n",
        "  max_keywords = min(len(distractors_new),5)\n",
        "  filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors_new,max_keywords,lambdaval)\n",
        "  # filtered_keywords = filtered_keywords[1:]\n",
        "  final = [word.capitalize()]\n",
        "  for wrd in filtered_keywords:\n",
        "    if wrd.lower() !=word.lower():\n",
        "      final.append(wrd.capitalize())\n",
        "  final = final[1:]\n",
        "  return final\n",
        "\n",
        "sent = \"What cryptocurrency did Musk rarely tweet about?\"\n",
        "keyword = \"Bitcoin\"\n",
        "\n",
        "# sent = \"What did Musk say he was working with to improve system transaction efficiency?\"\n",
        "# keyword= \"Dogecoin\"\n",
        "\n",
        "\n",
        "# sent = \"What company did Musk say would not accept bitcoin payments?\"\n",
        "# keyword= \"Tesla\"\n",
        "\n",
        "\n",
        "# sent = \"What has Musk often tweeted in support of?\"\n",
        "# keyword = \"Cryptocurrency\"\n",
        "\n",
        "print (get_distractors(keyword,sent,s2v,sentence_transformer_model,40,0.2))\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "s2FX-mGdf08p"
      },
      "outputs": [],
      "source": [
        "get_distractors_wordnet('lion')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "vgvffLecf4Cq"
      },
      "outputs": [],
      "source": [
        "import gradio as gr\n",
        "\n",
        "context = gr.inputs.Textbox(lines=10, placeholder=\"Enter paragraph/content here...\")\n",
        "output = gr.outputs.HTML(  label=\"Question and Answers\")\n",
        "radiobutton = gr.inputs.Radio([\"Wordnet\", \"Sense2Vec\"])\n",
        "\n",
        "def generate_question(context,radiobutton):\n",
        "  summary_text = summarizer(context,summary_model,summary_tokenizer)\n",
        "  for wrp in wrap(summary_text, 100):\n",
        "    print (wrp)\n",
        "  # np = getnounphrases(summary_text,sentence_transformer_model,3)\n",
        "  np =  get_keywords(context,summary_text)\n",
        "  print (\"\\n\\nNoun phrases\",np)\n",
        "  output=\"\"\n",
        "  for answer in np:\n",
        "    ques = get_question(summary_text,answer,question_model,question_tokenizer)\n",
        "    if radiobutton==\"Wordnet\":\n",
        "      distractors = get_distractors_wordnet(answer)\n",
        "    else:\n",
        "      distractors = get_distractors(answer.capitalize(),ques,s2v,sentence_transformer_model,40,0.2)\n",
        "    # output= output + ques + \"\\n\" + \"Ans: \"+answer.capitalize() + \"\\n\\n\"\n",
        "    output = output + \"<b style='color:blue;'>\" + ques + \"</b>\"\n",
        "    output = output + \"<br>\"\n",
        "    output = output + \"<b style='color:green;'>\" + \"Ans: \" +answer.capitalize()+  \"</b>\"+\"<br>\"\n",
        "    if len(distractors)>0:\n",
        "      for distractor in distractors[:4]:\n",
        "        output = output + \"<b style='color:brown;'>\" + distractor+  \"</b>\"+\"<br>\"\n",
        "    output = output + \"<br>\"\n",
        "\n",
        "  summary =\"Summary: \"+ summary_text\n",
        "  for answer in np:\n",
        "    summary = summary.replace(answer,\"<b>\"+answer+\"</b>\" + \"<br>\")\n",
        "    summary = summary.replace(answer.capitalize(),\"<b>\"+answer.capitalize()+\"</b>\")\n",
        "  output = output + \"<p>\"+summary+\"</p>\"\n",
        "  output = output + \"<br>\"\n",
        "  return output\n",
        "\n",
        "\n",
        "iface = gr.Interface(\n",
        "  fn=generate_question, \n",
        "  inputs=[context,radiobutton], \n",
        "  outputs=output)\n",
        "iface.launch(debug=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "EhKGhA1ff7Hi"
      },
      "outputs": [],
      "source": [
        "import requests\n",
        "\n",
        "url = \"https://question-answer.p.rapidapi.com/question-answer\"\n",
        "\n",
        "querystring = {\"question\":\"What are some tips to starting up your own small business?\"}\n",
        "\n",
        "headers = {\n",
        "\t\"X-RapidAPI-Key\": \"SIGN-UP-FOR-KEY\",\n",
        "\t\"X-RapidAPI-Host\": \"question-answer.p.rapidapi.com\"\n",
        "}\n",
        "\n",
        "response = requests.request(\"GET\", url, headers=headers, params=querystring)\n",
        "\n",
        "print(response.text)"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": []
    },
    "gpuClass": "standard",
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}