Spaces:
Sleeping
Sleeping
File size: 3,179 Bytes
5a6aade 25835df 5a6aade 9335b96 11666df 9335b96 9a5d9ef 4605fd9 5a6aade 9335b96 39a7b7a 5a6aade 39a7b7a 28a5246 39a7b7a 28a5246 4605fd9 87fabef 9d6fdf7 28a5246 4605fd9 9335b96 39a7b7a 4605fd9 9335b96 caae7d4 9335b96 9d6fdf7 9335b96 9d6fdf7 717b6e0 9d6fdf7 9a5d9ef 4605fd9 9335b96 39a7b7a 9d6fdf7 9335b96 68cca71 28a5246 9335b96 68cca71 9335b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import streamlit as st
import torch
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
model_id = "brucewayne0459/paligemma_derm"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Logo (Hugging Face)
st.markdown(
"""
<style>
.huggingface-logo {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.huggingface-logo img {
width: 150px;
}
</style>
<div class="huggingface-logo">
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Hugging Face Logo">
</div>
""",
unsafe_allow_html=True,
)
# App Title
st.title("VisionDerm")
st.write("Upload an image or use your camera to identify the skin condition.")
# Layout
col1, col2 = st.columns([3, 2])
with col1:
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Camera input
camera_photo = st.camera_input("Take a photo")
prompt = 'Identify the skin condition?'
# Choose input image
input_image = None
if camera_photo:
input_image = Image.open(camera_photo)
elif uploaded_file:
try:
# Open and convert uploaded file to RGB
input_image = Image.open(uploaded_file).convert("RGB")
input_image = input_image.copy() # Detach from file pointer
except Exception as e:
st.error(f"Error loading image: {str(e)}")
input_image = None
with col2:
if input_image:
try:
resized_image = input_image.resize((300, 300))
st.image(resized_image, caption="Selected Image (300x300)", use_container_width=True)
# Resize the image for processing (512x512 pixels)
max_size = (512, 512)
processed_image = input_image.resize(max_size)
with st.spinner("Processing..."):
inputs = processor(
text=prompt,
images=processed_image,
return_tensors="pt",
padding="longest"
).to(device)
default_max_tokens = 50
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=default_max_tokens)
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
if prompt in decoded_output:
decoded_output = decoded_output.replace(prompt, "").strip()
decoded_output = decoded_output.title()
# Display the result
st.success("Analysis Complete!")
st.write("**Model Output:**", decoded_output)
except Exception as e:
st.error(f"Error: {str(e)}")
st.markdown("---")
# Team Information
st.info("""
### Team: Mahasigma Berprestasi
- **Muhammad Karov Ardava Barus** ; 103052300001
- **Akmal Yaasir Fauzaan** ; 103052300008
- **Farand Diy Dat Mahazalfaa** ; 103052300050
- **Hauzan Rafi Attallah**; 103052330011
""") |