File size: 7,028 Bytes
d51b5dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8088a
 
d51b5dd
1b8088a
d51b5dd
 
 
1b8088a
d51b5dd
 
 
 
 
 
 
1b8088a
d51b5dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8088a
d51b5dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from pathlib import Path
import numpy as np
import random
import re
import textwrap

from shapely.geometry.polygon import Polygon
import aggdraw
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor

import gradio as gr

from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM

finetuned = AutoModelForCausalLM.from_pretrained('model')
tokenizer = AutoTokenizer.from_pretrained('gpt2')

# Utility functions

housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6, 
                         "balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}

housegan_colors = [[0, 0, 0], [197, 203, 159], [169, 89, 142], [0, 132, 66], [190, 0, 198], [255, 255, 255], 
                   [6, 53, 17], [2, 54, 192], [132, 151, 246], [197, 203, 159], [6, 53, 17],]

regex = re.compile(".*?\((.*?)\)")

def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None):

    image = Image.new("RGB", im_size, color="white")
    draw = aggdraw.Draw(image)

    for poly, color, in zip(polygons, colors):
        #get initial polygon coordinates
        xy = poly.exterior.xy
        coords = np.dstack((xy[1], xy[0])).flatten()
        # draw it on canvas, with the appropriate colors
        brush = aggdraw.Brush((0, 0, 0), opacity=255)
        draw.polygon(coords, brush)
        
        
        #get inner polygon coordinates
        small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
        if small_poly.geom_type == 'MultiPolygon':
            mycoordslist = [list(x.exterior.coords) for x in small_poly]
            for coord in mycoordslist:
                coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
                brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
                draw.polygon(coords, brush2)
        elif poly.geom_type == 'Polygon':
            #get inner polygon coordinates
            xy2 = small_poly.exterior.xy
            coords2 = np.dstack((xy2[1], xy2[0])).flatten()
            # draw it on canvas, with the appropriate colors
            brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
            draw.polygon(coords2, brush2)

    image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)

    if(fpath):
        image.save(fpath, quality=100, subsampling=0)

    return draw, image

def prompt_to_layout(user_prompt, fpath=None):
    
    model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
    input_ids = tokenizer(model_prompt, return_tensors='pt')
    output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300)
    output = tokenizer.batch_decode(output, skip_special_tokens=True)
    output = output[0].split('[Layout]')[1].split(', ')
    spaces = [txt.split(':')[0] for txt in output]

    coordinates = [txt.split(':')[1] for txt in output]
    coordinates = [re.findall(regex, coord) for coord in coordinates]
    
    polygons = []
    for coord in coordinates:
        polygons.append([point.split(',') for point in coord])
        
    geom = []
    for poly in polygons:
        geom.append(Polygon(np.array(poly, dtype=int)))
        
    colors = [housegan_colors[housegan_labels[space]] for space in spaces]
    
    _, im = draw_polygons(geom, colors, fpath=fpath)
    
    legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
    
    im = np.array(im)
    im[:40, :] = np.array(legend)
    im = Image.fromarray(im)
    
    return im, output
    
def mut_txt2layout(mut_output):
    output = mut_output[0].split('[Layout]')[1].split(', ')
    spaces = [txt.split(':')[0].strip(' ') for txt in output]
    coordinates = [txt.split(':')[1] for txt in output]
    coordinates = [re.findall(regex, coord) for coord in coordinates]

    polygons = []
    for coord in coordinates:
        polygons.append([point.split(',') for point in coord])

    geom = []
    for poly in polygons:
        geom.append(Polygon(np.array(poly, dtype=int)))

    colors = [housegan_colors[housegan_labels[space]] for space in spaces]
    _, im = draw_polygons(geom, colors, fpath=None)

    legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")

    im = np.array(im)
    im[:40, :] = np.array(legend)
    im = Image.fromarray(im)
    
    return im
    
def prompt_with_mutation(user_prompt, fpath=None):
    
    #Create initial layout based on prompt
    im, output = prompt_to_layout(user_prompt)
        
    #Create mutated layout based on initial
    cut_off = np.random.randint(1, 3, size=1)[0]
    cut_off = min(cut_off, len(output)-1)
    to_keep = ', '.join(output[:cut_off]) + ', '
    new_prompt = '[User prompt] {} [Layout] {}'.format(user_prompt, to_keep)
    input_ids = tokenizer(new_prompt, return_tensors='pt')
    mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300)
    mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True)
    mut_im = mut_txt2layout(mut_output)
    
    return im, mut_im, output, mut_output
    
# Gradio App

def gen_and_mutate(user_prompt, mutate=False):    
    if(mutate):
        im, mut_im = None, None
        while (mut_im is None):
            im, mut_im, output, mut_output = prompt_with_mutation(user_prompt)
    else:
        mut_im=Image.open(r"C:\\Users\\user\\Desktop\\empty.png")
        im, _ = prompt_to_layout(user_prompt)

    return im, mut_im
    
checkbox =  gr.inputs.Checkbox(label='Mutate')
textbox = gr.inputs.Textbox(placeholder='Enter a prompt describing a layout, see below for instructions')

generated = gr.outputs.Image(label='Generated Layout')
mutated = gr.outputs.Image(label='Mutated Layout')

iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox], outputs=[generated, mutated],
                      thumbnail=r"E:\Datasets\MyFloorplans\text2text\thumbnail_gradio.PNG",
                      description='Demo of Semantic Generation of Residential Layouts \n',
                      article='''<div>
    <p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p>
     <ul>
      <li> <strong>typology</strong>: "a house with two bedrooms and two bathrooms"</li>
      <li> <strong>enumeration</strong>: "a house with five rooms"</li>
      <li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li>
      <li> <strong>location</strong>: "a house with a bedroom in the north east side"</li>
    </ul>
    <p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p>
    <p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a> </p>
</div>''')

iface.launch()