File size: 5,119 Bytes
52a058d
53b7033
52a058d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b7033
dd8e993
52a058d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e576e22
cce6990
52a058d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import cv2
import gradio as gr
import imutils
import numpy as np
import torch
from pytorchvideo.transforms import (
    ApplyTransformToKey,
    Normalize,
    RandomShortSideScale,
    RemoveKey,
    ShortSideScale,
    UniformTemporalSubsample,
)
from torchvision.transforms import (
    Compose,
    Lambda,
    RandomCrop,
    RandomHorizontalFlip,
    Resize,
)
from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification

MODEL_CKPT = "archit11/videomae-base-finetuned-ucfcrime-full"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL = VideoMAEForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE)
PROCESSOR = VideoMAEFeatureExtractor.from_pretrained(MODEL_CKPT)

RESIZE_TO = PROCESSOR.size["shortest_edge"]
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]}
VAL_TRANSFORMS = Compose(
    [
        UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE),
        Lambda(lambda x: x / 255.0),
        Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]),
        Resize((RESIZE_TO, RESIZE_TO)),
    ]
)
LABELS = list(MODEL.config.label2id.keys())


def parse_video(video_file):
    """A utility to parse the input videos.

    Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
    """
    vs = cv2.VideoCapture(video_file)

    # try to determine the total number of frames in the video file
    try:
        prop = (
            cv2.cv.CV_CAP_PROP_FRAME_COUNT
            if imutils.is_cv2()
            else cv2.CAP_PROP_FRAME_COUNT
        )
        total = int(vs.get(prop))
        print("[INFO] {} total frames in video".format(total))

    # an error occurred while trying to determine the total
    # number of frames in the video file
    except:
        print("[INFO] could not determine # of frames in video")
        print("[INFO] no approx. completion time can be provided")
        total = -1

    frames = []

    # loop over frames from the video file stream
    while True:
        # read the next frame from the file
        (grabbed, frame) = vs.read()
        if frame is not None:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame)
        # if the frame was not grabbed, then we have reached the end
        # of the stream
        if not grabbed:
            break

    return frames


def preprocess_video(frames: list):
    """Utility to apply preprocessing transformations to a video tensor."""
    # Each frame in the `frames` list has the shape: (height, width, num_channels).
    # Collated together the `frames` has the the shape: (num_frames, height, width, num_channels).
    # So, after converting the `frames` list to a torch tensor, we permute the shape
    # such that it becomes (num_channels, num_frames, height, width) to make
    # the shape compatible with the preprocessing transformations. After applying the
    # preprocessing chain, we permute the shape to (num_frames, num_channels, height, width)
    # to make it compatible with the model. Finally, we add a batch dimension so that our video
    # classification model can operate on it.
    video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype))
    video_tensor = video_tensor.permute(
        3, 0, 1, 2
    )  # (num_channels, num_frames, height, width)
    video_tensor_pp = VAL_TRANSFORMS(video_tensor)
    video_tensor_pp = video_tensor_pp.permute(
        1, 0, 2, 3
    )  # (num_frames, num_channels, height, width)
    video_tensor_pp = video_tensor_pp.unsqueeze(0)
    return video_tensor_pp.to(DEVICE)


def infer(video_file):
    frames = parse_video(video_file)
    video_tensor = preprocess_video(frames)
    inputs = {"pixel_values": video_tensor}

    # forward pass
    with torch.no_grad():
        outputs = MODEL(**inputs)
        logits = outputs.logits
    softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0)
    confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))}
    return confidences


gr.Interface(
    fn=infer,
    inputs=gr.Video(),
    outputs=gr.Label(num_top_classes=13),
    examples=[
        ["examples/fight.mp4"],
        ["examples/baseball.mp4"],
        ["examples/balancebeam.mp4"],
        ["./examples/no-fight1.mp4"],
        ["./examples/no-fight2.mp4"],
        ["./examples/no-fight3.mp4"],
        ["./examples/no-fight4.mp4"],


    ],
   title="VideoMAE fin-tuned on a subset of Fight / No Fight dataset",
    description=(
        "Gradio demo for VideoMAE for video classification. To use it, simply upload your video or click one of the"
        " examples to load them. Read more at the links below."
    ),
    article=(
        "<div style='text-align: center;'><a href='https://huggingface.co/docs/transformers/model_doc/videomae' target='_blank'>VideoMAE</a>"
        " <center><a href='https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset' target='_blank'>Fine-tuned Model</a></center></div>"
    ),
    allow_flagging=False,
).launch()