File size: 7,029 Bytes
56fb754
f146c64
 
56fb754
 
5603cf0
fab8cb4
56fb754
 
 
71bc219
56fb754
 
fa811ea
56fb754
 
 
 
 
fa811ea
 
 
56fb754
 
fa811ea
56fb754
 
fa811ea
56fb754
f4a7ef2
 
56fb754
 
fa811ea
56fb754
 
 
 
 
 
 
 
 
 
 
5603cf0
a3db774
 
 
5603cf0
fa811ea
fab8cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db774
fa811ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fb754
 
 
 
 
fa811ea
56fb754
 
 
 
 
a3db774
 
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db774
56fb754
 
 
 
 
 
 
 
 
fa811ea
56fb754
 
 
 
 
 
 
 
 
e1e8c19
56fb754
e1e8c19
 
56fb754
 
 
 
 
 
 
5603cf0
56fb754
e1e8c19
56fb754
fa811ea
56fb754
 
5603cf0
56fb754
 
fa811ea
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa811ea
56fb754
fa811ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import spaces

from threading import Thread
from typing import Iterator, List, Tuple
import json
import requests

import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# Description for the Gradio Interface
DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Select two different models from the dropdowns and see how they perform on the same input.
"""

# Constants
MAX_MAX_NEW_TOKENS = 256
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Model options
MODEL_OPTIONS = [
    "sarvamai/OpenHathi-7B-Hi-v0.1-Base",
    "TokenBender/Navarna_v0_1_OpenHermes_Hindi"
]

# Load models and tokenizers
models = {}
tokenizers = {}

for model_id in MODEL_OPTIONS:
    tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
    models[model_id] = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        load_in_8bit=True,
    )
    models[model_id].eval()
    
    # Set pad_token_id to eos_token_id if it's not set
    if tokenizers[model_id].pad_token_id is None:
        tokenizers[model_id].pad_token_id = tokenizers[model_id].eos_token_id

# Function to log comparisons
def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
    log_data = {
        "question": question,
        "model1": {"name": model1_name, "answer": answer1},
        "model2": {"name": model2_name, "answer": answer2},
        "winner": winner
    }
    
    # Send log data to remote server
    try:
        response = requests.post('http://144.24.151.32:5000/log', json=log_data, timeout=5)
        if response.status_code == 200:
            print("Successfully logged to server")
        else:
            print(f"Failed to log to server. Status code: {response.status_code}")
    except requests.RequestException as e:
        print(f"Error sending log to server: {e}")

# Function to prepare input
def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]):
    tokenizer = tokenizers[model_id]
    # Prepare inputs for the model
    inputs = tokenizer(
        [x[1] for x in chat_history] + [message],
        return_tensors="pt",
        truncation=True,
        padding=True,
        max_length=MAX_INPUT_TOKEN_LENGTH,
    )
    return inputs

# Function to generate responses from models
@spaces.GPU(duration=120)
def generate(
    model_id: str,
    message: str,
    chat_history: List[Tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.4,
    top_p: float = 0.95,
) -> Iterator[str]:
    model = models[model_id]
    tokenizer = tokenizers[model_id]

    inputs = prepare_input(model_id, message, chat_history)
    input_ids = inputs.input_ids

    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        num_beams=1,
        pad_token_id=tokenizer.eos_token_id,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

# Function to compare two models
def compare_models(
    model1_name: str,
    model2_name: str,
    message: str,
    chat_history1: List[Tuple[str, str]],
    chat_history2: List[Tuple[str, str]],
    max_new_tokens: int,
    temperature: float,
    top_p: float,
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
    if model1_name == model2_name:
        error_message = [("System", "Error: Please select two different models.")]
        return error_message, error_message, chat_history1, chat_history2

    output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
    output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))

    chat_history1.append((message, output1))
    chat_history2.append((message, output2))

    log_comparison(model1_name, model2_name, message, output1, output2)

    return chat_history1, chat_history2, chat_history1, chat_history2

# Function to log the voting result
def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
    winner = model1_name if choice == "Model 1" else model2_name
    log_comparison(model1_name, model2_name, question, answer1, answer2, winner)
    return f"You voted that {winner} performs better. This has been logged."

# Gradio UI setup
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
            chatbot1 = gr.Chatbot(label="Model 1 Output")
        with gr.Column():
            model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
            chatbot2 = gr.Chatbot(label="Model 2 Output")
    
    text_input = gr.Textbox(label="Input Text", lines=3)
    
    with gr.Row():
        max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
        temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
    
    compare_btn = gr.Button("Compare Models")
    
    with gr.Row():
        better1_btn = gr.Button("Model 1 is Better")
        better2_btn = gr.Button("Model 2 is Better")

    vote_output = gr.Textbox(label="Voting Result")

    compare_btn.click(
        compare_models,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
        outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
    )
    
    better1_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
        outputs=[vote_output]
    )
    
    better2_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
        outputs=[vote_output]
    )

# Main function to run the Gradio app
if __name__ == "__main__":
    demo.queue(max_size=3).launch(share=True)