File size: 8,014 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import asyncio
import json
import os

import pandas as pd
import requests

from evaluation.benchmarks.gorilla.utils import encode_question, get_data_for_hub
from evaluation.utils.shared import (
    EvalMetadata,
    EvalOutput,
    codeact_user_response,
    compatibility_for_eval_history_pairs,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}

AGENT_CLS_TO_INST_SUFFIX = {
    'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}


def get_config(

    metadata: EvalMetadata,

) -> AppConfig:
    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        runtime='docker',
        max_iterations=metadata.max_iterations,
        sandbox=SandboxConfig(
            base_container_image='python:3.12-bookworm',
            enable_auto_lint=True,
            use_host_network=False,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(metadata.llm_config)
    agent_config = config.get_agent_config(metadata.agent_class)
    agent_config.enable_prompt_extensions = False
    return config


def process_instance(

    instance: pd.Series,

    metadata: EvalMetadata,

    reset_logger: bool = True,

) -> EvalOutput:
    config = get_config(metadata)
    instance_id = instance['question_id']
    question = instance['question']

    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance_id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance_id}.')

    # Prepare instruction
    instruction = encode_question(question, instance['hub'])
    instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
    # NOTE: You can actually set slightly different instruction for different agents
    instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
    # logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})

    # Here's how you can run the agent (similar to the `main` function) and get the final task state
    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)
    state: State | None = asyncio.run(
        run_controller(
            config=config,
            initial_user_action=MessageAction(content=instruction),
            runtime=runtime,
            fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
                metadata.agent_class
            ),
        )
    )
    # ======= Attempt to evaluate the agent's edits =======
    # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
    # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.

    if state is None:
        raise ValueError('State should not be None.')

    # retrieve the last message from the agent
    last_agent_message = state.get_last_agent_message()
    model_answer_raw = last_agent_message.content if last_agent_message else ''

    # attempt to parse model_answer
    ast_eval_fn = instance['ast_eval']
    correct, hallucination = ast_eval_fn(instance_id, model_answer_raw)
    metrics = state.metrics.get() if state.metrics else None
    logger.info(
        f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
    )

    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
    # for compatibility with the existing output format, we can remake the pairs here
    # remove when it becomes unnecessary
    histories = compatibility_for_eval_history_pairs(state.history)

    output = EvalOutput(
        instance_id=instance_id,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
        test_result={
            'text': model_answer_raw,
            'correct': correct,
            'hallucination': hallucination,
        },
    )
    return output


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--hubs',
        type=str,
        help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.',
        default='hf,torch,tf',
    )
    args, _ = parser.parse_known_args()

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False
    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    hubs = args.hubs.split(',')
    if len(hubs) == 0:
        raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')

    dfs = []
    for hub in hubs:
        logger.info(f'Evaluating APIBench {hub} test')
        df = get_data_for_hub(hub)
        dfs.append(df)
    dataset_df = pd.concat(dfs)
    dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True)

    metadata = make_metadata(
        llm_config=llm_config,
        dataset_name=f'gorilla-{hub}',
        agent_class=args.agent_cls,
        max_iterations=args.max_iterations,
        eval_note=args.eval_note,
        eval_output_dir=args.eval_output_dir,
        data_split=args.data_split,
    )
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')

    dataset = prepare_dataset(
        dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
    )

    file_path = os.path.join(os.path.dirname(__file__), 'my-languages.so')
    # Check if the file exists
    if not os.path.exists(file_path):
        url = 'https://raw.githubusercontent.com/ShishirPatil/gorilla/main/eval/eval-scripts/codebleu/parser/my-languages.so'
        response = requests.get(url)
        with open(file_path, 'wb') as f:
            f.write(response.content)
    else:
        print('File already exists, skipping download.')

    run_evaluation(
        dataset=dataset,
        metadata=metadata,
        output_file=output_file,
        num_workers=args.eval_num_workers,
        process_instance_func=process_instance,
    )

    # Read the output file and calculate the accuracy
    total_correct = 0
    total_hallucination = 0
    output = []
    with open(output_file, 'r') as f:
        for line in f:
            data = json.loads(line)
            if data['test_result']['correct']:
                total_correct += 1
            if data['test_result']['hallucination']:
                total_hallucination += 1
            output.append(data)
    logger.info(
        f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}'
    )