File size: 25,289 Bytes
c176aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# Table of Contents

- [Table of Contents](#table-of-contents)
- [main](#main)
- [PINN](#pinn)
- [PINN.pinns](#pinnpinns)
  - [PINNd\_p Objects](#pinnd_p-objects)
      - [forward](#forward)
  - [PINNhd\_ma Objects](#pinnhd_ma-objects)
  - [PINNT\_ma Objects](#pinnt_ma-objects)
- [utils](#utils)
- [utils.test](#utilstest)
- [utils.dataset\_loader](#utilsdataset_loader)
      - [get\_dataset](#get_dataset)
- [utils.ndgan](#utilsndgan)
  - [DCGAN Objects](#dcgan-objects)
      - [\_\_init\_\_](#__init__)
      - [define\_discriminator](#define_discriminator)
      - [define\_generator](#define_generator)
      - [build\_models](#build_models)
      - [generate\_latent\_points](#generate_latent_points)
      - [generate\_fake\_samples](#generate_fake_samples)
      - [define\_gan](#define_gan)
      - [summarize\_performance](#summarize_performance)
      - [train\_gan](#train_gan)
      - [start\_training](#start_training)
      - [predict](#predict)
- [utils.data\_augmentation](#utilsdata_augmentation)
  - [dataset Objects](#dataset-objects)
      - [\_\_init\_\_](#__init__-1)
      - [generate](#generate)
- [:orange\[nets\]](#orangenets)
- [nets.envs](#netsenvs)
  - [SCI Objects](#sci-objects)
      - [\_\_init\_\_](#__init__-2)
      - [feature\_gen](#feature_gen)
      - [feature\_importance](#feature_importance)
      - [data\_flow](#data_flow)
      - [init\_seed](#init_seed)
      - [train\_epoch](#train_epoch)
      - [compile](#compile)
      - [train](#train)
      - [save](#save)
      - [onnx\_export](#onnx_export)
      - [jit\_export](#jit_export)
      - [inference](#inference)
      - [plot](#plot)
      - [plot3d](#plot3d)
      - [performance](#performance)
      - [performance\_super](#performance_super)
  - [RCI Objects](#rci-objects)
      - [data\_flow](#data_flow-1)
      - [compile](#compile-1)
      - [plot](#plot-1)
      - [performance](#performance-1)
- [nets.dense](#netsdense)
  - [Net Objects](#net-objects)
      - [\_\_init\_\_](#__init__-3)
- [nets.design](#netsdesign)
      - [B\_field\_norm](#b_field_norm)
      - [PUdesign](#pudesign)
- [nets.deep\_dense](#netsdeep_dense)
  - [dmodel Objects](#dmodel-objects)
      - [\_\_init\_\_](#__init__-4)
- [nets.opti](#netsopti)
- [nets.opti.blackbox](#netsoptiblackbox)
  - [Hyper Objects](#hyper-objects)
      - [\_\_init\_\_](#__init__-5)
      - [define\_model](#define_model)
      - [objective](#objective)
      - [start\_study](#start_study)

<a id="main"></a>

# main

<a id="PINN"></a>

# PINN

<a id="PINN.pinns"></a>

# PINN.pinns

<a id="PINN.pinns.PINNd_p"></a>

## PINNd\_p Objects

```python
class PINNd_p(nn.Module)
```

$d \mapsto P$

<a id="PINN.pinns.PINNd_p.forward"></a>

#### forward

```python
def forward(x)
```

$P,U$ input, $d$ output

**Arguments**:

- `x` __type__ - _description_
  

**Returns**:

- `_type_` - _description_

<a id="PINN.pinns.PINNhd_ma"></a>

## PINNhd\_ma Objects

```python
class PINNhd_ma(nn.Module)
```

$h,d \mapsto m_a $

<a id="PINN.pinns.PINNT_ma"></a>

## PINNT\_ma Objects

```python
class PINNT_ma(nn.Module)
```

$ m_a, U \mapsto T$

<a id="utils"></a>

# utils

<a id="utils.test"></a>

# utils.test

<a id="utils.dataset_loader"></a>

# utils.dataset\_loader

<a id="utils.dataset_loader.get_dataset"></a>

#### get\_dataset

```python
def get_dataset(raw: bool = False,
                sample_size: int = 1000,
                name: str = 'dataset.pkl',
                source: str = 'dataset.csv',
                boundary_conditions: list = None) -> _pickle
```

Gets augmented dataset

**Arguments**:

- `raw` _bool, optional_ - either to use source data or augmented. Defaults to False.
- `sample_size` _int, optional_ - sample size. Defaults to 1000.
- `name` _str, optional_ - name of wanted dataset. Defaults to 'dataset.pkl'.
- `boundary_conditions` _list,optional_ - y1,y2,x1,x2.

**Returns**:

- `_pickle` - pickle buffer

<a id="utils.ndgan"></a>

# utils.ndgan

<a id="utils.ndgan.DCGAN"></a>

## DCGAN Objects

```python
class DCGAN()
```

<a id="utils.ndgan.DCGAN.__init__"></a>

#### \_\_init\_\_

```python
def __init__(latent, data)
```

The function takes in two arguments, the latent space dimension and the dataframe. It then sets

the latent space dimension, the dataframe, the number of inputs and outputs, and then builds the
models

**Arguments**:

- `latent`: The number of dimensions in the latent space
- `data`: This is the dataframe that contains the data that we want to generate

<a id="utils.ndgan.DCGAN.define_discriminator"></a>

#### define\_discriminator

```python
def define_discriminator(inputs=8)
```

The discriminator is a neural network that takes in a vector of length 8 and outputs a single

value between 0 and 1

**Arguments**:

- `inputs`: number of features in the dataset, defaults to 8 (optional)

**Returns**:

The model is being returned.

<a id="utils.ndgan.DCGAN.define_generator"></a>

#### define\_generator

```python
def define_generator(latent_dim, outputs=8)
```

The function takes in a latent dimension and outputs and returns a model with two hidden layers

and an output layer

**Arguments**:

- `latent_dim`: The dimension of the latent space, or the space that the generator will map
to
- `outputs`: the number of outputs of the generator, defaults to 8 (optional)

**Returns**:

The model is being returned.

<a id="utils.ndgan.DCGAN.build_models"></a>

#### build\_models

```python
def build_models()
```

The function returns the generator and discriminator models

**Returns**:

The generator and discriminator models are being returned.

<a id="utils.ndgan.DCGAN.generate_latent_points"></a>

#### generate\_latent\_points

```python
def generate_latent_points(latent_dim, n)
```

> Generate random points in latent space as input for the generator

**Arguments**:

- `latent_dim`: the dimension of the latent space, which is the input to the generator
- `n`: number of images to generate

**Returns**:

A numpy array of random numbers.

<a id="utils.ndgan.DCGAN.generate_fake_samples"></a>

#### generate\_fake\_samples

```python
def generate_fake_samples(generator, latent_dim, n)
```

It generates a batch of fake samples with class labels

**Arguments**:

- `generator`: The generator model that we will train
- `latent_dim`: The dimension of the latent space, e.g. 100
- `n`: The number of samples to generate

**Returns**:

x is the generated images and y is the labels for the generated images.

<a id="utils.ndgan.DCGAN.define_gan"></a>

#### define\_gan

```python
def define_gan(generator, discriminator)
```

The function takes in a generator and a discriminator, sets the discriminator to be untrainable,

and then adds the generator and discriminator to a sequential model. The sequential model is then compiled with an optimizer and a loss function. 

The optimizer is adam, which is a type of gradient descent algorithm. 

Loss function is binary crossentropy, which is a loss function that is used for binary
classification problems. 


The function then returns the GAN.

**Arguments**:

- `generator`: The generator model
- `discriminator`: The discriminator model that takes in a dataset and outputs a single value
representing fake/real

**Returns**:

The model is being returned.

<a id="utils.ndgan.DCGAN.summarize_performance"></a>

#### summarize\_performance

```python
def summarize_performance(epoch, generator, discriminator, latent_dim, n=200)
```

> This function evaluates the discriminator on real and fake data, and plots the real and fake

data

**Arguments**:

- `epoch`: the number of epochs to train for
- `generator`: the generator model
- `discriminator`: the discriminator model
- `latent_dim`: The dimension of the latent space
- `n`: number of samples to generate, defaults to 200 (optional)

<a id="utils.ndgan.DCGAN.train_gan"></a>

#### train\_gan

```python
def train_gan(g_model,
              d_model,
              gan_model,
              latent_dim,
              num_epochs=2500,
              num_eval=2500,
              batch_size=2)
```

**Arguments**:

- `g_model`: the generator model
- `d_model`: The discriminator model
- `gan_model`: The GAN model, which is the generator model combined with the discriminator
model
- `latent_dim`: The dimension of the latent space. This is the number of random numbers that
the generator model will take as input
- `num_epochs`: The number of epochs to train for, defaults to 2500 (optional)
- `num_eval`: number of epochs to run before evaluating the model, defaults to 2500
(optional)
- `batch_size`: The number of samples to use for each gradient update, defaults to 2
(optional)

<a id="utils.ndgan.DCGAN.start_training"></a>

#### start\_training

```python
def start_training()
```

The function takes the generator, discriminator, and gan models, and the latent vector as
arguments, and then calls the train_gan function.

<a id="utils.ndgan.DCGAN.predict"></a>

#### predict

```python
def predict(n)
```

It takes the generator model and the latent space as input and returns a batch of fake samples

**Arguments**:

- `n`: the number of samples to generate

**Returns**:

the generated fake samples.

<a id="utils.data_augmentation"></a>

# utils.data\_augmentation

<a id="utils.data_augmentation.dataset"></a>

## dataset Objects

```python
class dataset()
```

Creates dataset from input source

<a id="utils.data_augmentation.dataset.__init__"></a>

#### \_\_init\_\_

```python
def __init__(number_samples: int,
             name: str,
             source: str,
             boundary_conditions: list = None)
```


**Arguments**:

- `number_samples` _int_ - number of samples to be genarated
- `name` _str_ - name of dataset
- `source` _str_ - source file
- `boundary_conditions` _list_ - y1,y2,x1,x2

<a id="utils.data_augmentation.dataset.generate"></a>

#### generate

```python
def generate()
```

The function takes in a dataframe, normalizes it, and then trains a DCGAN on it. 

The DCGAN is a type of generative adversarial network (GAN) that is used to generate new data. 

The DCGAN is trained on the normalized dataframe, and then the DCGAN is used to generate new
data. 

The new data is then concatenated with the original dataframe, and the new dataframe is saved as
a pickle file. 

The new dataframe is then returned.

**Returns**:

The dataframe is being returned.

<a id="nets"></a>

# :orange[nets]

<a id="nets.envs"></a>

# nets.envs

<a id="nets.envs.SCI"></a>

## SCI Objects

```python
class SCI()
```

Scaled computing interface.

**Arguments**:

- `hidden_dim` _int, optional_ - Max demension of hidden linear layer. Defaults to 200. Should be >80 in not 1d case
- `dropout` _bool, optional_ - LEGACY, don't use. Defaults to True.
- `epochs` _int, optional_ - Optionally specify epochs here, but better in train. Defaults to 10.
- `dataset` _str, optional_ - dataset to be selected from ./data. Defaults to 'test.pkl'. If name not exists, code will generate new dataset with upcoming parameters.
- `sample_size` _int, optional_ - Samples to be generated (note: BEFORE applying boundary conditions). Defaults to 1000.
- `source` _str, optional_ - Source from which data will be generated. Better to not change. Defaults to 'dataset.csv'.
- `boundary_conditions` _list, optional_ - If sepcified, whole dataset will be cut rectangulary. Input list is [ymin,ymax,xmin,xmax] type. Defaults to None.

<a id="nets.envs.SCI.__init__"></a>

#### \_\_init\_\_

```python
def __init__(hidden_dim: int = 200,
             dropout: bool = True,
             epochs: int = 10,
             dataset: str = 'test.pkl',
             sample_size: int = 1000,
             source: str = 'dataset.csv',
             boundary_conditions: list = None,
             batch_size: int = 20)
```



**Arguments**:

- `hidden_dim` _int, optional_ - Max demension of hidden linear layer. Defaults to 200. Should be >80 in not 1d case
- `dropout` _bool, optional_ - LEGACY, don't use. Defaults to True.
- `epochs` _int, optional_ - Optionally specify epochs here, but better in train. Defaults to 10.
- `dataset` _str, optional_ - dataset to be selected from ./data. Defaults to 'test.pkl'. If name not exists, code will generate new dataset with upcoming parameters.
- `sample_size` _int, optional_ - Samples to be generated (note: BEFORE applying boundary conditions). Defaults to 1000.
- `source` _str, optional_ - Source from which data will be generated. Better to not change. Defaults to 'dataset.csv'.
- `boundary_conditions` _list, optional_ - If sepcified, whole dataset will be cut rectangulary. Input list is [ymin,ymax,xmin,xmax] type. Defaults to None.
- `batch_size` _int, optional_ - Batch size for training.

<a id="nets.envs.SCI.feature_gen"></a>

#### feature\_gen

```python
def feature_gen(base: bool = True,
                fname: str = None,
                index: int = None,
                func=None) -> None
```

Generate new features. If base true, generates most obvious ones. You can customize this by adding
new feature as name of column - fname, index of parent column, and lambda function which needs to be applied elementwise.

**Arguments**:

- `base` _bool, optional_ - Defaults to True.
- `fname` _str, optional_ - Name of new column. Defaults to None.
- `index` _int, optional_ - Index of parent column. Defaults to None.
- `func` __type_, optional_ - lambda function. Defaults to None.

<a id="nets.envs.SCI.feature_importance"></a>

#### feature\_importance

```python
def feature_importance(X: pd.DataFrame, Y: pd.Series, verbose: int = 1)
```

Gets feature importance by SGD regression and score selection. Default threshold is 1.25*mean
input X as self.df.iloc[:,(columns of choice)]
Y as self.df.iloc[:,(column of choice)]

**Arguments**:

- `X` _pd.DataFrame_ - Builtin DataFrame
- `Y` _pd.Series_ - Builtin Series
- `verbose` _int, optional_ - either to or to not print actual report. Defaults to 1.

**Returns**:

  Report (str)

<a id="nets.envs.SCI.data_flow"></a>

#### data\_flow

```python
def data_flow(columns_idx: tuple = (1, 3, 3, 5),
              idx: tuple = None,
              split_idx: int = 800) -> torch.utils.data.DataLoader
```

Data prep pipeline
It is called automatically, don't call it in your code.

**Arguments**:

- `columns_idx` _tuple, optional_ - Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5).
- `idx` _tuple, optional_ - 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx)
  split_idx (int) : Index to split for training
  

**Returns**:

- `torch.utils.data.DataLoader` - Torch native dataloader

<a id="nets.envs.SCI.init_seed"></a>

#### init\_seed

```python
def init_seed(seed)
```

Initializes seed for torch - optional

<a id="nets.envs.SCI.train_epoch"></a>

#### train\_epoch

```python
def train_epoch(X, model, loss_function, optim)
```

Inner function of class - don't use.

We iterate through the data, calculate the loss, backpropagate, and update the weights

**Arguments**:

- `X`: the training data
- `model`: the model we're training
- `loss_function`: the loss function to use
- `optim`: the optimizer, which is the algorithm that will update the weights of the model

<a id="nets.envs.SCI.compile"></a>

#### compile

```python
def compile(columns: tuple = None,
            idx: tuple = None,
            optim: torch.optim = torch.optim.AdamW,
            loss: nn = nn.L1Loss,
            model: nn.Module = dmodel,
            custom: bool = False,
            lr: float = 0.0001) -> None
```

Builds model, loss, optimizer. Has defaults

**Arguments**:

- `columns` _tuple, optional_ - Columns to be selected for feature fitting. Defaults to (1,3,3,5).
- `optim` - torch Optimizer. Default AdamW
- `loss` - torch Loss function (nn). Defaults to L1Loss

<a id="nets.envs.SCI.train"></a>

#### train

```python
def train(epochs: int = 10) -> None
```

Train model
- If sklearn instance uses .fit()

- epochs (int,optional)

<a id="nets.envs.SCI.save"></a>

#### save

```python
def save(name: str = 'model.pt') -> None
```

> This function saves the model to a file

**Arguments**:

- `name` (`str (optional)`): The name of the file to save the model to, defaults to model.pt

<a id="nets.envs.SCI.onnx_export"></a>

#### onnx\_export

```python
def onnx_export(path: str = './models/model.onnx')
```

> We are exporting the model to the ONNX format, using the input data and the model itself

**Arguments**:

- `path` (`str (optional)`): The path to save the model to, defaults to ./models/model.onnx

<a id="nets.envs.SCI.jit_export"></a>

#### jit\_export

```python
def jit_export(path: str = './models/model.pt')
```

Exports properly defined model to jit

**Arguments**:

- `path` _str, optional_ - path to models. Defaults to './models/model.pt'.

<a id="nets.envs.SCI.inference"></a>

#### inference

```python
def inference(X: tensor, model_name: str = None) -> np.ndarray
```

Inference of (pre-)trained model

**Arguments**:

- `X` _tensor_ - your data in domain of train

**Returns**:

- `np.ndarray` - predictions

<a id="nets.envs.SCI.plot"></a>

#### plot

```python
def plot()
```

> If the input and output dimensions are the same, plot the input and output as a scatter plot.
If the input and output dimensions are different, plot the first dimension of the input and
output as a scatter plot

<a id="nets.envs.SCI.plot3d"></a>

#### plot3d

```python
def plot3d(colX=0, colY=1)
```

Plot of inputs and predicted data in mesh format

**Returns**:

  plotly plot

<a id="nets.envs.SCI.performance"></a>

#### performance

```python
def performance(c=0.4) -> dict
```

Automatic APE based performance if applicable, else returns nan

**Arguments**:

- `c` _float, optional_ - ZDE mitigation constant. Defaults to 0.4.

**Returns**:

- `dict` - {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}

<a id="nets.envs.SCI.performance_super"></a>

#### performance\_super

```python
def performance_super(c=0.4,
                      real_data_column_index: tuple = (1, 8),
                      real_data_samples: int = 23,
                      generated_length: int = 1000) -> dict
```

Performance by custom parameters. APE loss

**Arguments**:

- `c` _float, optional_ - ZDE mitigation constant. Defaults to 0.4.
- `real_data_column_index` _tuple, optional_ - Defaults to (1,8).
- `real_data_samples` _int, optional_ - Defaults to 23.
- `generated_length` _int, optional_ - Defaults to 1000.

**Returns**:

- `dict` - {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}

<a id="nets.envs.RCI"></a>

## RCI Objects

```python
class RCI(SCI)
```

Real values interface, uses different types of NN, NO scaling.
Parent:
    SCI()

<a id="nets.envs.RCI.data_flow"></a>

#### data\_flow

```python
def data_flow(columns_idx: tuple = (1, 3, 3, 5),
              idx: tuple = None,
              split_idx: int = 800) -> torch.utils.data.DataLoader
```

Data prep pipeline

**Arguments**:

- `columns_idx` _tuple, optional_ - Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5).
- `idx` _tuple, optional_ - 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx)
  split_idx (int) : Index to split for training
  

**Returns**:

- `torch.utils.data.DataLoader` - Torch native dataloader

<a id="nets.envs.RCI.compile"></a>

#### compile

```python
def compile(columns: tuple = None,
            idx: tuple = (3, 1),
            optim: torch.optim = torch.optim.AdamW,
            loss: nn = nn.L1Loss,
            model: nn.Module = PINNd_p,
            lr: float = 0.001) -> None
```

Builds model, loss, optimizer. Has defaults

**Arguments**:

- `columns` _tuple, optional_ - Columns to be selected for feature fitting. Defaults to None.
- `idx` _tuple, optional_ - indexes to be selected Default (3,1)
  optim - torch Optimizer
  loss - torch Loss function (nn)

<a id="nets.envs.RCI.plot"></a>

#### plot

```python
def plot()
```

Plots 2d plot of prediction vs real values

<a id="nets.envs.RCI.performance"></a>

#### performance

```python
def performance(c=0.4) -> dict
```

RCI performnace. APE errors.

**Arguments**:

- `c` _float, optional_ - correction constant to mitigate division by 0 error. Defaults to 0.4.

**Returns**:

- `dict` - {'Generator_Accuracy, %':np.mean(a),'APE_abs, %':abs_ape,'Model_APE, %': ape}

<a id="nets.dense"></a>

# nets.dense

<a id="nets.dense.Net"></a>

## Net Objects

```python
class Net(nn.Module)
```

The Net class inherits from the nn.Module class, which has a number of attributes and methods (such
as .parameters() and .zero_grad()) which we will be using. You can read more about the nn.Module
class [here](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)

<a id="nets.dense.Net.__init__"></a>

#### \_\_init\_\_

```python
def __init__(input_dim: int = 2, hidden_dim: int = 200)
```

We create a neural network with two hidden layers, each with **hidden_dim** neurons, and a ReLU activation

function. The output layer has one neuron and no activation function

**Arguments**:

- `input_dim` (`int (optional)`): The dimension of the input, defaults to 2
- `hidden_dim` (`int (optional)`): The number of neurons in the hidden layer, defaults to 200

<a id="nets.design"></a>

# nets.design

<a id="nets.design.B_field_norm"></a>

#### B\_field\_norm

```python
def B_field_norm(Bmax: float, L: float, k: int = 16, plot=True) -> np.array
```

Returns vec B_z for MS config

**Arguments**:

- `Bmax` _any_ - maximum B in thruster
  L - channel length
  k - magnetic field profile number

<a id="nets.design.PUdesign"></a>

#### PUdesign

```python
def PUdesign(P: float, U: float) -> pd.DataFrame
```

Computes design via numerical model, uses fits from PINNs

**Arguments**:

- `P` _float_ - _description_
- `U` _float_ - _description_
  

**Returns**:

- `_type_` - _description_

<a id="nets.deep_dense"></a>

# nets.deep\_dense

<a id="nets.deep_dense.dmodel"></a>

## dmodel Objects

```python
class dmodel(nn.Module)
```

<a id="nets.deep_dense.dmodel.__init__"></a>

#### \_\_init\_\_

```python
def __init__(in_features=1, hidden_features=200, out_features=1)
```

We're creating a neural network with 4 layers, each with 200 neurons. The first layer takes in the input, the second layer takes in the output of the first layer, the third layer takes in the
output of the second layer, and the fourth layer takes in the output of the third layer

**Arguments**:

- `in_features`: The number of input features, defaults to 1 (optional)
- `hidden_features`: the number of neurons in the hidden layers, defaults to 200 (optional)
- `out_features`: The number of classes for classification (1 for regression), defaults to 1
(optional)

<a id="nets.opti"></a>

# nets.opti

<a id="nets.opti.blackbox"></a>

# nets.opti.blackbox

<a id="nets.opti.blackbox.Hyper"></a>

## Hyper Objects

```python
class Hyper(SCI)
```

Hyper parameter tunning class. Allows to generate best NN architecture for task. Inputs are column indexes. idx[-1] is targeted value.
Based on OPTUNA algorithms it is very fast and reliable. Outputs are NN parameters in json. Optionally full report for every trial is available at the neptune.ai

<a id="nets.opti.blackbox.Hyper.__init__"></a>

#### \_\_init\_\_

```python
def __init__(idx: tuple = (1, 3, 7), *args, **kwargs)
```

The function __init__() is a constructor that initializes the class Hyper

**Arguments**:

- `idx` (`tuple`): tuple of integers, the indices of the data to be loaded

<a id="nets.opti.blackbox.Hyper.define_model"></a>

#### define\_model

```python
def define_model(trial)
```

We define a function that takes in a trial object and returns a neural network with the number

of layers, hidden units and activation functions defined by the trial object.

**Arguments**:

- `trial`: This is an object that contains the information about the current trial

**Returns**:

A sequential model with the number of layers, hidden units and activation functions
defined by the trial.

<a id="nets.opti.blackbox.Hyper.objective"></a>

#### objective

```python
def objective(trial)
```

We define a model, an optimizer, and a loss function. We then train the model for a number of

epochs, and report the loss at the end of each epoch

*"optimizer": ["Adam", "RMSprop", "SGD" 'AdamW','Adamax','Adagrad']*
*"lr" $\in$ [1e-7,1e-3], log=True*

**Arguments**:

- `trial`: The trial object that is passed to the objective function

**Returns**:

The accuracy of the model.

<a id="nets.opti.blackbox.Hyper.start_study"></a>

#### start\_study

```python
def start_study(n_trials: int = 100,
                neptune_project: str = None,
                neptune_api: str = None)
```

It takes a number of trials, a neptune project name and a neptune api token as input and runs

the objective function on the number of trials specified. If the neptune project and api token
are provided, it logs the results to neptune

**Arguments**:

- `n_trials` (`int (optional)`): The number of trials to run, defaults to 100
- `neptune_project` (`str`): the name of the neptune project you want to log to
- `neptune_api` (`str`): your neptune api key