File size: 15,422 Bytes
d3fac2e dd2c937 d3fac2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# enhanced_dashboard.py
import streamlit as st
import requests
import base64
import json
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import time
# Page configuration
st.set_page_config(
page_title="Website Intelligence Dashboard",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 3rem;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.metric-card {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
border-left: 4px solid #1f77b4;
}
.success-metric {
border-left-color: #28a745;
}
.warning-metric {
border-left-color: #ffc107;
}
.danger-metric {
border-left-color: #dc3545;
}
.sidebar-info {
background-color: #e8f4fd;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
# API Configuration
API_BASE = "https://apexherbert200-playwright-scraper-clean.hf.space"
# Sidebar configuration
st.sidebar.markdown('<div class="sidebar-info"><h3>π Website Intelligence</h3><p>Comprehensive website analysis and monitoring platform</p></div>', unsafe_allow_html=True)
# API endpoint selection
analysis_type = st.sidebar.selectbox(
"Choose Analysis Type",
["Complete Analysis", "SEO Only", "Performance Only", "Metadata Only", "Screenshot Only"]
)
# Advanced options
st.sidebar.markdown("### βοΈ Advanced Options")
screenshot_width = st.sidebar.slider("Screenshot Width", 800, 1920, 1200)
screenshot_height = st.sidebar.slider("Screenshot Height", 600, 1080, 800)
full_page_screenshot = st.sidebar.checkbox("Full Page Screenshot", value=True)
# Main dashboard
st.markdown('<h1 class="main-header">π Website Intelligence Dashboard</h1>', unsafe_allow_html=True)
# URL input with validation
col1, col2 = st.columns([3, 1])
with col1:
url = st.text_input(
"π Enter Website URL",
value="https://www.example.com",
placeholder="https://www.yourwebsite.com"
)
with col2:
st.markdown("<br>", unsafe_allow_html=True)
analyze_button = st.button("π Analyze Website", type="primary")
# URL validation
def validate_url(url):
if not url:
return False, "Please enter a URL"
if not url.startswith(('http://', 'https://')):
return False, "URL must start with http:// or https://"
return True, ""
# API request function with error handling
def make_api_request(endpoint, params):
try:
response = requests.get(f"{API_BASE}/{endpoint}", params=params)
response.raise_for_status()
return response.json(), None
except requests.exceptions.Timeout:
return None, "Request timed out. Please try again."
except requests.exceptions.ConnectionError:
return None, "Connection error. Please check your internet connection."
except requests.exceptions.HTTPError as e:
return None, f"HTTP error: {e.response.status_code}"
except Exception as e:
return None, f"Unexpected error: {str(e)}"
# Main analysis logic
if analyze_button:
is_valid, error_msg = validate_url(url)
if not is_valid:
st.error(f"β {error_msg}")
else:
# Progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Initialize data containers
seo_data = None
perf_data = None
meta_data = None
screenshot_data = None
try:
# Metadata Analysis
if analysis_type in ["Complete Analysis", "Metadata Only"]:
status_text.text("π Analyzing metadata...")
progress_bar.progress(20)
meta_data, error = make_api_request("metadata", {"url": url})
if error:
st.error(f"Metadata error: {error}")
# SEO Analysis
if analysis_type in ["Complete Analysis", "SEO Only"]:
status_text.text("π Performing SEO audit...")
progress_bar.progress(40)
seo_data, error = make_api_request("seo", {"url": url})
if error:
st.error(f"SEO error: {error}")
# Performance Analysis
if analysis_type in ["Complete Analysis", "Performance Only"]:
status_text.text("β‘ Measuring performance...")
progress_bar.progress(60)
perf_data, error = make_api_request("performance", {"url": url})
if error:
st.error(f"Performance error: {error}")
# Screenshot
if analysis_type in ["Complete Analysis", "Screenshot Only"]:
status_text.text("πΈ Capturing screenshot...")
progress_bar.progress(80)
screenshot_params = {
"url": url,
"width": screenshot_width,
"height": screenshot_height,
"full_page": full_page_screenshot
}
screenshot_response, error = make_api_request("screenshot", screenshot_params)
if error:
st.error(f"Screenshot error: {error}")
else:
screenshot_data = screenshot_response.get("screenshot")
progress_bar.progress(100)
status_text.text("β
Analysis complete!")
time.sleep(1)
progress_bar.empty()
status_text.empty()
except Exception as e:
st.error(f"β Analysis failed: {str(e)}")
st.stop()
# Display Results
st.markdown("---")
# Overview Section
if any([meta_data, seo_data, perf_data]):
st.header("π Website Overview")
col1, col2, col3, col4 = st.columns(4)
with col1:
if meta_data and meta_data.get('title'):
st.metric("π Page Title", "β
Found" if meta_data['title'] else "β Missing")
with col2:
if seo_data:
h1_count = seo_data.get('h1_count', 0)
h1_status = "β
Good" if h1_count == 1 else f"β οΈ {h1_count} H1s"
st.metric("π·οΈ H1 Tags", h1_status)
with col3:
if seo_data:
missing_alts = len(seo_data.get('missing_image_alts', []))
alt_status = "β
All Good" if missing_alts == 0 else f"β {missing_alts} Missing"
st.metric("πΌοΈ Image Alt Tags", alt_status)
with col4:
if perf_data and perf_data.get('page_load_time_ms'):
load_time = perf_data['page_load_time_ms']
if load_time < 2000:
load_status = "π Fast"
elif load_time < 4000:
load_status = "β οΈ Moderate"
else:
load_status = "π Slow"
st.metric("β‘ Load Time", f"{load_time:.0f}ms", delta=load_status)
# Metadata Section
if meta_data:
st.header("π Metadata Analysis")
col1, col2 = st.columns(2)
with col1:
st.subheader("Basic Information")
st.write(f"**Title:** {meta_data.get('title', 'Not found')}")
st.write(f"**Description:** {meta_data.get('description', 'Not found')}")
st.write(f"**Canonical URL:** {meta_data.get('canonical', 'Not found')}")
if meta_data.get('favicon'):
st.write(f"**Favicon:** β
Found")
st.image(meta_data['favicon'], width=32)
with col2:
st.subheader("Social Media")
og_data = meta_data.get('og', {})
twitter_data = meta_data.get('twitter', {})
if og_data.get('og:title'):
st.write(f"**OG Title:** {og_data['og:title']}")
if og_data.get('og:description'):
st.write(f"**OG Description:** {og_data['og:description']}")
if twitter_data.get('twitter:title'):
st.write(f"**Twitter Title:** {twitter_data['twitter:title']}")
# SEO Section
if seo_data:
st.header("π SEO Analysis")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
st.metric("H1 Tags Count", seo_data.get('h1_count', 0))
if seo_data.get('h1_count', 0) != 1:
st.warning("β οΈ Should have exactly 1 H1 tag")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
internal_links = seo_data.get('internal_links', 0)
external_links = seo_data.get('external_links', 0)
st.metric("Internal Links", internal_links)
st.metric("External Links", external_links)
st.markdown('</div>', unsafe_allow_html=True)
with col3:
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
missing_alts = seo_data.get('missing_image_alts', [])
st.metric("Missing Alt Tags", len(missing_alts))
if missing_alts:
st.warning(f"β οΈ {len(missing_alts)} images missing alt text")
st.markdown('</div>', unsafe_allow_html=True)
# SEO Details
st.subheader("SEO Details")
col1, col2 = st.columns(2)
with col1:
st.write(f"**Robots Meta:** {seo_data.get('robots_meta', 'Not found')}")
st.write(f"**Has Canonical:** {'β
Yes' if seo_data.get('has_canonical') else 'β No'}")
st.write(f"**Meta Keywords:** {seo_data.get('meta_keywords', 'Not found')}")
with col2:
if missing_alts:
st.write("**Images Missing Alt Text:**")
for img in missing_alts[:5]: # Show first 5
st.write(f"- {img}")
if len(missing_alts) > 5:
st.write(f"... and {len(missing_alts) - 5} more")
# Performance Section
if perf_data:
st.header("β‘ Performance Metrics")
# Create performance chart
metrics = []
values = []
colors = []
if perf_data.get('page_load_time_ms'):
metrics.append('Page Load Time (ms)')
values.append(perf_data['page_load_time_ms'])
colors.append('#1f77b4')
if perf_data.get('first_contentful_paint'):
metrics.append('First Contentful Paint (ms)')
values.append(perf_data['first_contentful_paint'])
colors.append('#ff7f0e')
if perf_data.get('largest_contentful_paint'):
metrics.append('Largest Contentful Paint (ms)')
values.append(perf_data['largest_contentful_paint'])
colors.append('#2ca02c')
if metrics:
fig = px.bar(
x=metrics,
y=values,
title="Performance Metrics",
color=metrics,
color_discrete_sequence=colors
)
fig.update_layout(showlegend=False)
st.plotly_chart(fig, use_container_width=True)
# Performance details
col1, col2 = st.columns(2)
with col1:
st.subheader("Core Web Vitals")
if perf_data.get('first_contentful_paint'):
fcp = perf_data['first_contentful_paint']
fcp_status = "π’ Good" if fcp < 1800 else "π‘ Needs Improvement" if fcp < 3000 else "π΄ Poor"
st.metric("First Contentful Paint", f"{fcp:.0f}ms", delta=fcp_status)
if perf_data.get('largest_contentful_paint'):
lcp = perf_data['largest_contentful_paint']
lcp_status = "π’ Good" if lcp < 2500 else "π‘ Needs Improvement" if lcp < 4000 else "π΄ Poor"
st.metric("Largest Contentful Paint", f"{lcp:.0f}ms", delta=lcp_status)
with col2:
st.subheader("Additional Metrics")
if perf_data.get('cumulative_layout_shift'):
cls = perf_data['cumulative_layout_shift']
cls_status = "π’ Good" if cls < 0.1 else "π‘ Needs Improvement" if cls < 0.25 else "π΄ Poor"
st.metric("Cumulative Layout Shift", f"{cls:.3f}", delta=cls_status)
if perf_data.get('page_load_time_ms'):
load_time = perf_data['page_load_time_ms']
st.metric("Total Load Time", f"{load_time:.0f}ms")
# Screenshot Section
if screenshot_data:
st.header("πΈ Website Screenshot")
try:
screenshot_bytes = base64.b64decode(screenshot_data)
st.image(screenshot_bytes, caption=f"Screenshot of {url}", use_column_width=True)
# Download button for screenshot
st.download_button(
label="π₯ Download Screenshot",
data=screenshot_bytes,
file_name=f"screenshot_{url.replace('https://', '').replace('http://', '').replace('/', '_')}.png",
mime="image/png"
)
except Exception as e:
st.error(f"Failed to display screenshot: {str(e)}")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; padding: 2rem;'>
<p>π <strong>Website Intelligence Dashboard</strong> | Powered by Advanced Web Analysis APIs</p>
<p>Built with β€οΈ using Streamlit | Β© 2024</p>
</div>
""", unsafe_allow_html=True)
# Sidebar additional info
st.sidebar.markdown("---")
st.sidebar.markdown("### π Analysis Features")
st.sidebar.markdown("""
- **SEO Audit**: H1 tags, meta data, links analysis
- **Performance**: Core Web Vitals, load times
- **Metadata**: Social media tags, canonical URLs
- **Screenshots**: Visual website capture
- **Real-time**: Live website analysis
""")
st.sidebar.markdown("### π§ API Status")
try:
health_response = requests.get(f"{API_BASE}/health", timeout=5)
if health_response.status_code == 200:
st.sidebar.success("π’ API Online")
else:
st.sidebar.error("π΄ API Issues")
except:
st.sidebar.warning("π‘ API Status Unknown")
|