Spaces:
Runtime error
Runtime error
File size: 8,150 Bytes
fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 1a08676 fc9da2a 1a08676 fc9da2a 1a08676 fc9da2a 1a08676 fc9da2a 9a32f24 7062303 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a 9a32f24 fc9da2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
## Dirty one file implementation for expermiental (and fun) purpose only
import os
import gradio as gr
from gradio_client import Client
import requests
from dotenv import load_dotenv
from pydub import AudioSegment
from tqdm.auto import tqdm
print("starting")
load_dotenv()
HF_API = os.getenv("HF_API")
SEAMLESS_API_URL = os.getenv("SEAMLESS_API_URL") # path to Seamlessm4t API endpoint
GPU_AVAILABLE = os.getenv("GPU_AVAILABLE")
DEFAULT_TARGET_LANGUAGE = "French"
MISTRAL_SUMMARY_URL = (
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
)
LLAMA_SUMMARY_URL = (
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
)
print("env setup ok")
DESCRIPTION = """
# Transcribe and create a summary of a conversation.
"""
DUPLICATE = """
To duplicate this repo, you have to give permission from three reopsitories and accept all user conditions:
1- https://huggingface.co/pyannote/voice-activity-detection
2- https://hf.co/pyannote/segmentation
3- https://hf.co/pyannote/speaker-diarization
"""
from pyannote.audio import Pipeline
# initialize diarization pipeline
diarizer = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1", use_auth_token=HF_API
)
# send pipeline to GPU (when available)
import torch
diarizer.to(torch.device(GPU_AVAILABLE))
print("diarizer setup ok")
# predict is a generator that incrementally yields recognized text with speaker label
def predict(target_language, input_audio):
print("->predict started")
print(target_language, type(input_audio), input_audio)
print("-->diarization")
diarized = diarizer(input_audio, min_speakers=2, max_speakers=5)
print("-->automatic speech recognition")
# split audio according to diarization
song = AudioSegment.from_wav(input_audio)
# client = Client(SEAMLESS_API_URL, hf_token=HF_API, serialize=False)
output_text = ""
for turn, _, speaker in diarized.itertracks(yield_label=True):
print(speaker, turn)
try:
filename = f"{turn.start}_segment.wav"
clipped = song[turn.start * 1000 : turn.end * 1000]
clipped.export(filename, format="wav", bitrate=16000)
# result = client.predict(f"my.wav", target_language, api_name="/asr")
result = automatic_speech_recognition(target_language, filename)
current_text = f"speaker: {speaker} text: {result} "
print(current_text)
if current_text is not None:
output_text = output_text + "\n" + current_text
yield output_text
except Exception as e:
print(e)
def automatic_speech_recognition(language, filename):
match language:
case "French":
api_url = "https://api-inference.huggingface.co/models/bofenghuang/whisper-large-v3-french"
case "English":
api_url = "https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h"
case _:
return f"Unknown language {language}"
print(f"-> automatic_speech_recognition with {api_url}")
with open(filename, "rb") as f:
data = f.read()
response = requests.post(
api_url, headers={"Authorization": f"Bearer {HF_API}"}, data=data
)
print(response.json())
return response.json()["text"]
def generate_summary_llama3(language, transcript):
queryTxt = f"""
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful and truthful patient-doctor encounter summary writer.
Users sends you transcripts of patient-doctor encounter and you create accurate and concise summaries.
The summary only contains informations from the transcript.
Your summary is written in {language}.
The summary only includes relevant sections.
<template>
# Chief Complaint
# History of Present Illness (HPI)
# Relevant Past Medical History
# Physical Examination
# Assessment and Plan
# Follow-up
# Additional Notes
</template> <|eot_id|>
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
<transcript>
{transcript}
</transcript><|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
payload = {
"inputs": queryTxt,
"parameters": {
"return_full_text": False,
"wait_for_model": True,
"min_length": 1000,
},
"options": {"use_cache": False},
}
response = requests.post(
LLAMA_SUMMARY_URL, headers={"Authorization": f"Bearer {HF_API}"}, json=payload
)
print(response.json())
return response.json()[0]["generated_text"][len("<summary>") :]
def generate_summary_mistral(language, transcript):
sysPrompt = f"""<s>[INST]
You are a helpful and truthful patient-doctor encounter summary writer.
Users sends you transcripts of patient-doctor encounter and you create accurate and concise summaries.
The summary only contains informations from the transcript.
Your summary is written in {language}.
The summary only includes relevant sections.
<template>
# Chief Complaint
# History of Present Illness (HPI)
# Relevant Past Medical History
# Physical Examination
# Assessment and Plan
# Follow-up
# Additional Notes
</template>
"""
queryTxt = f"""
<transcript>
{transcript}
</transcript>
[/INST]
"""
payload = {
"inputs": sysPrompt + queryTxt,
"parameters": {
"return_full_text": False,
"wait_for_model": True,
"min_length": 1000,
},
"options": {"use_cache": False},
}
response = requests.post(
MISTRAL_SUMMARY_URL, headers={"Authorization": f"Bearer {HF_API}"}, json=payload
)
print(response.json())
return response.json()[0]["generated_text"][len("<summary>") :]
def generate_summary(model, language, transcript):
match model:
case "Mistral-7B":
print("-> summarize with mistral")
return generate_summary_mistral(language, transcript)
case "LLAMA3":
print("-> summarize with llama3")
return generate_summary_llama3(language, transcript)
case _:
return f"Unknown model {model}"
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
mic = audio_source == "microphone"
return (
gr.update(visible=mic, value=None), # input_audio_mic
gr.update(visible=not mic, value=None), # input_audio_file
)
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
target_language = gr.Dropdown(
choices=["French", "English"],
label="Output Language",
value="French",
interactive=True,
info="Select your target language",
)
with gr.Row() as audio_box:
input_audio = gr.Audio(type="filepath")
submit = gr.Button("Transcribe")
transcribe_output = gr.Textbox(
label="Transcribed Text",
value="",
interactive=False,
lines=10,
scale=10,
max_lines=100,
)
submit.click(
fn=predict,
inputs=[target_language, input_audio],
outputs=[transcribe_output],
api_name="predict",
)
with gr.Row():
sumary_model = gr.Dropdown(
choices=["Mistral-7B", "LLAMA3"],
label="Summary model",
value="Mistral-7B",
interactive=True,
info="Select your summary model",
)
summarize = gr.Button("Summarize")
summary_output = gr.Textbox(
label="Summarized Text",
value="",
interactive=False,
lines=10,
scale=10,
max_lines=100,
)
summarize.click(
fn=generate_summary,
inputs=[sumary_model, target_language, transcribe_output],
outputs=[summary_output],
api_name="predict",
)
gr.Markdown(DUPLICATE)
demo.queue(max_size=50).launch()
|