Spaces:
Runtime error
Runtime error
File size: 58,641 Bytes
85ce65e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 |
"""Building blocks for speech SSL models supporting pruning.
Originally from:
https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/components.py
"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple
import torch
from torch import Tensor, nn
from torch.nn import Module
from .hardconcrete import HardConcrete
from .pruning_utils import (
prune_conv1d_layer,
prune_layer_norm,
prune_linear_layer,
)
def _init_transformer_params(module):
"""
Initialize the weights of Transformer module in Wav2Vec2/HuBERT.
If the module is ``nn.Linear``, normalize the weight with mean 0 and standard deviation 0.02.
If ``bias`` is set to ``True`` in the module, set ``bias`` to 0.
If the module is ``nn.Embedding``, normalize the weight with mean 0 and standard deviation 0.02.
If ``padding_idx`` is not None, set the weight of padding to 0.
Note:
Ths method corresponds to
`init_bert_params
<https://github.com/facebookresearch/fairseq/blob/main/fairseq/modules/transformer_sentence_encoder.py#L21>`__
in the original ``fairseq`` implementation.
"""
def normal_(data):
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class LayerNorm(nn.LayerNorm):
"""Layer norm with transpose"""
def forward(self, input: Tensor) -> Tensor:
x = input.transpose(-2, -1)
x = nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
x = x.transpose(-2, -1)
return x
class ConvLayerBlock(Module):
"""Convolution unit of FeatureExtractor"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
bias: bool,
layer_norm: Optional[Module],
prune_conv_channels: bool = False,
):
super().__init__()
self.kernel_size = kernel_size
self.stride = stride
self.layer_norm = layer_norm
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
bias=bias,
)
if prune_conv_channels:
self.hard_concrete = HardConcrete(n_in=out_channels, init_mean=0.01)
else:
self.hard_concrete = None
def forward(
self,
x: Tensor,
length: Optional[Tensor],
) -> Tuple[Tensor, Optional[Tensor]]:
"""
Args:
x (Tensor): Shape: ``[batch, in_channels, in_frame]``.
length (Tensor or None, optional): Shape ``[batch, ]``.
Returns:
Tensor: Shape ``[batch, out_channels, out_frames]``.
Optional[Tensor]: Shape ``[batch, ]``.
"""
x = self.conv(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
x = nn.functional.gelu(x)
if self.hard_concrete is not None:
channel_mask = self.hard_concrete() # hard concrete mask, (out_channels,)
x = x * channel_mask.unsqueeze(-1)
if length is not None:
length = torch.div(length - self.kernel_size, self.stride, rounding_mode="floor") + 1
# When input length is 0, the resulting length can be negative. So fix it here.
length = torch.max(torch.zeros_like(length), length)
return x, length
def get_num_params_and_out_channels(self, in_channels):
if self.hard_concrete is not None:
out_channels = self.hard_concrete.l0_norm()
else:
out_channels = self.conv.out_channels
num_params = in_channels * out_channels * self.kernel_size
if self.conv.bias is not None:
num_params += out_channels
if self.layer_norm is not None:
num_params += out_channels * 2
return num_params, out_channels
class FeatureExtractor(Module):
"""Extract features from audio
Args:
conv_layers (nn.ModuleList):
convolution layers
"""
def __init__(
self,
conv_layers: nn.ModuleList,
):
super().__init__()
self.conv_layers = conv_layers
# NOTE: a dummy weight used to save the soft mask of the last conv layer
self.dummy_weight = nn.Parameter(
torch.ones(conv_layers[-1].conv.out_channels, dtype=torch.float32),
requires_grad=False
)
def forward(
self,
x: Tensor,
length: Optional[Tensor],
) -> Tuple[Tensor, Optional[Tensor]]:
"""
Args:
x (Tensor):
Input Tensor representing a batch of audio,
shape: ``[batch, time]``.
length (Tensor or None, optional):
Valid length of each input sample. shape: ``[batch, ]``.
Returns:
Tensor:
The resulting feature, shape: ``[batch, frame, feature]``
Optional[Tensor]:
Valid length of each output sample. shape: ``[batch, ]``.
"""
if x.ndim != 2:
raise ValueError("Expected the input Tensor to be 2D (batch, time), " "but received {list(x.shape)}")
x = x.unsqueeze(1) # (batch, channel==1, frame)
for layer in self.conv_layers:
x, length = layer(x, length) # (batch, feature, frame)
x = x.transpose(1, 2) # (batch, frame, feature)
x = x * self.dummy_weight
return x, length
def get_num_params_and_final_out_channels(self):
in_channels = 1
num_params = 0
for layer in self.conv_layers:
layer_params, in_channels = layer.get_num_params_and_out_channels(in_channels)
num_params += layer_params
num_params += in_channels # dummy weight
return num_params, in_channels
def prune(self):
""""Prune conv layers and dummy weight based on hardconcrete parameters.
This is an in-place operation.
"""
new_config = [] # [(output_channel, kernel_size, stride), ...]
for idx, layer in enumerate(self.conv_layers):
if layer.hard_concrete is not None:
assert not layer.hard_concrete.training
mask = layer.hard_concrete() # (out_features,)
index = mask.nonzero().squeeze(-1) # 2D -> 1D
assert len(index) > 0, f"Conv channels pruned to zero at index {idx}"
new_config.append(
(len(index), layer.kernel_size, layer.stride)
)
# prune the current layer
prune_conv1d_layer(layer.conv, index, "output")
if layer.layer_norm is not None:
prune_layer_norm(layer.layer_norm, index)
# prune the next layer
if idx == len(self.conv_layers) - 1:
self.dummy_weight.data *= mask
self.dummy_weight = nn.Parameter(
self.dummy_weight.index_select(0, index).clone().detach(), requires_grad=False
)
else:
self.conv_layers[idx+1].conv.weight.data *= mask.unsqueeze(-1)
prune_conv1d_layer(self.conv_layers[idx+1].conv, index, dim="input")
layer.hard_concrete = None
else:
new_config.append(
(layer.conv.out_channels, layer.kernel_size, layer.stride)
)
index = torch.arange(layer.conv.out_channels, dtype=torch.long)
return new_config, index
class FeatureProjection(Module):
"""Layer that connects FeatureExtractor and Encoder
Projects features to encoder dimension.
Args:
in_features (int): Input feature dim.
out_features (int): Output feature dim.
dropout (float): Dropout probability.
"""
def __init__(
self,
in_features: int,
out_features: int,
dropout: float,
):
super().__init__()
self.layer_norm = nn.LayerNorm(in_features)
self.projection = nn.Linear(
in_features,
out_features,
)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
"""
Args:
x (Tensor):
Feature Tensor. shape: ``[batch, frame, in_feature]``
Returns:
Tensor: Projected features. ``[batch, frame, out_feature]``.
"""
x = self.layer_norm(x)
x = self.projection(x)
x = self.dropout(x)
return x
def get_num_params(self, in_features):
return in_features * 2 + (in_features + 1) * self.projection.out_features
class ConvolutionalPositionalEmbedding(Module):
"""Positional embedding which is placed at the beginning of Transformer.
Args:
embed_dim (int): Feature dimension of the input Tensor.
kernel_size (int): The number of frames to be use.
groups (int): The number of groups in feature dimensions.
"""
def __init__(
self,
embed_dim: int,
kernel_size: int,
groups: int,
):
super().__init__()
self.embed_dim = embed_dim
self.kernel_size = kernel_size
self.conv = nn.Conv1d(
in_channels=embed_dim,
out_channels=embed_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
)
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
self.num_remove: int = 1 if kernel_size % 2 == 0 else 0
def __prepare_scriptable__(self):
for hook in self.conv._forward_pre_hooks.values():
# The hook we want to remove is an instance of WeightNorm class, so
# normally we would do `if isinstance(...)` but this class is not accessible
# because of shadowing, so we check the module name directly.
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
if hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm":
torch.nn.utils.remove_weight_norm(self.conv)
return self
def forward(self, x):
"""
Args:
x (Tensor): shape ``[batch, frame, feature]``.
Returns:
Tensor: The resulting feature. Shape ``[batch, frame, feature]``.
"""
x = x.transpose(-2, -1)
x = self.conv(x)
if self.num_remove > 0:
x = x[..., : -self.num_remove]
x = torch.nn.functional.gelu(x)
x = x.transpose(-2, -1)
return x
class SelfAttention(Module):
"""Multihead Self Attention module
Args:
embed_dim (int): Total dimension of the model.
num_heads (int): The number of heads.
dropout (float, optional):
Dropout probability on attn_output_weights. Default: ``0.0``
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
head_dim: int,
dropout: float = 0.0,
prune_heads: bool = False, # whether to prune attention heads
prune_layer: bool = False, # whether to prune entire attention layers
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = head_dim
self.dropout = torch.nn.Dropout(dropout)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, num_heads * head_dim, bias=True)
self.v_proj = nn.Linear(embed_dim, num_heads * head_dim, bias=True)
self.q_proj = nn.Linear(embed_dim, num_heads * head_dim, bias=True)
self.out_proj = nn.Linear(num_heads * head_dim, embed_dim, bias=True)
if prune_heads:
self.hard_concrete_for_heads = HardConcrete(n_in=num_heads, init_mean=0.01)
else:
self.hard_concrete_for_heads = None
if prune_layer:
self.hard_concrete_for_layer = HardConcrete(n_in=1, init_mean=0.01)
else:
self.hard_concrete_for_layer = None
def forward(
self,
x: Tensor,
attention_mask: Optional[Tensor] = None,
position_bias: Optional[Tensor] = None,
key_padding_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
"""
Args:
x (Tensor): shape: ``[batch_size, sequence_length, embed_dim]``.
attention_mask (Tensor or ``None``, optional):
shape: ``[batch_size, 1, sequence_length, sequence_length]``
position_bias: Not used. Only for the compatibility with :py:class:`WavLMSelfAttention`.
key_padding_mask (Tensor or ``None``): Not used. Only for the compatibility with
:py:class:`WavLMSelfAttention`.
Returns:
(Tensor, ``None``): The resulting attention output and ``None`` (necessary for compatibility
with :py:class:`WavLMSelAttention`).
Attention output shape: ``[batch, sequence_length, embed_dim]``.
"""
if x.ndim != 3 or x.shape[2] != self.embed_dim:
raise ValueError(
f"The expected input shape is (batch, sequence, embed_dim=={self.embed_dim}). " f"Found {x.shape}."
)
batch_size, length, embed_dim = x.size()
shape = (batch_size, length, self.num_heads, self.head_dim)
q = self.q_proj(x).view(*shape).transpose(2, 1) # B, nH, L, Hd
k = self.k_proj(x).view(*shape).permute(0, 2, 3, 1) # B, nH, Hd, L
v = self.v_proj(x).view(*shape).transpose(2, 1) # B, nH, L, Hd
# scale down q to avoid value overflow.
weights = (self.scaling * q) @ k # B, nH, L, L
if attention_mask is not None:
weights += attention_mask
# subtracting a constant value from the tensor won't change the output of softmax.
# apply the subtraction to avoid value overflow in torch.nn.functional.softmax.
# for more details, please see Equation 7 in https://arxiv.org/abs/2112.08778
weights = weights - weights.max(dim=-1, keepdim=True)[0]
weights = torch.nn.functional.softmax(weights, dim=-1)
weights = self.dropout(weights)
output = weights @ v # B, nH, L, Hd
if self.hard_concrete_for_heads is not None:
head_mask = self.hard_concrete_for_heads() # (nH,)
output = output * head_mask.unsqueeze(-1).unsqueeze(-1)
output = output.transpose(2, 1).reshape(batch_size, length, self.num_heads * self.head_dim)
output = self.out_proj(output)
if self.hard_concrete_for_layer is not None:
layer_mask = self.hard_concrete_for_layer() # (1,)
output = output * layer_mask
return output, None # Necessary for compatibility with WavLMSelAttention
def get_num_params(self):
if self.hard_concrete_for_heads is not None:
num_heads = self.hard_concrete_for_heads.l0_norm()
else:
num_heads = self.num_heads
num_params = (self.embed_dim + 1) * num_heads * self.head_dim * 3 \
+ (num_heads * self.head_dim + 1) * self.embed_dim
if self.hard_concrete_for_layer is not None:
num_params *= self.hard_concrete_for_layer.l0_norm()
return num_params
def prune(self):
new_config = {
"use_attention": True,
"num_heads": self.num_heads,
}
if self.hard_concrete_for_layer is not None:
assert not self.hard_concrete_for_layer.training
layer_mask = self.hard_concrete_for_layer() # (1,)
self.out_proj.weight.data *= layer_mask
self.out_proj.bias.data *= layer_mask
if layer_mask == 0:
new_config["use_attention"] = False
self.hard_concrete_for_layer = None
if self.hard_concrete_for_heads is not None:
assert not self.hard_concrete_for_heads.training
head_mask = self.hard_concrete_for_heads() # (num_heads,)
new_config["num_heads"] = len(head_mask.nonzero())
if new_config["num_heads"] == 0:
new_config["use_attention"] = False
else:
full_mask = head_mask.repeat_interleave(self.head_dim)
full_index = full_mask.nonzero().squeeze(-1) # 1D
prune_linear_layer(self.k_proj, full_index, "output")
prune_linear_layer(self.v_proj, full_index, "output")
prune_linear_layer(self.q_proj, full_index, "output")
self.out_proj.weight.data *= full_mask
prune_linear_layer(self.out_proj, full_index, "input")
self.hard_concrete_for_heads = None
return new_config
class WavLMSelfAttention(SelfAttention):
"""Multi-headed self-attention for WavLM model :cite:`chen2022wavlm`.
Args:
embed_dim (int): Total dimension of the model.
num_heads (int): The number of heads.
dropout (float, optional): Dropout probability on attn_output_weights. (Default: to ``0.0``)
bias (bool, optional): If ``True``, add bias to input / output projection layers. (Default: ``True``)
has_relative_attention_bias (bool, optional): If ``True``, apply relative position embedding.
Necessary in the first encoder layer, but not in the subsequent ones. (Default: ``False``)
num_buckets (int, optional): Number of buckets for relative position embedding. (Default: ``32``)
max_distance (int, optional): Naximum distance for relative position embedding. (Default: ``128``)
gru_rel_pos (bool, optional): If ``True``, apply gated relative position embedding. (Default: ``False``)
"""
def __init__(
self,
embed_dim: int,
total_num_heads: int,
remaining_heads: Optional[List[int]] = None,
dropout: float = 0.0,
bias: bool = True,
has_relative_attention_bias: bool = False,
num_buckets: int = 32,
max_distance: int = 128,
gru_rel_pos: bool = True,
prune_heads: bool = False,
prune_layer: bool = False,
):
self.total_num_heads = total_num_heads
if remaining_heads is None:
self.remaining_heads = list(range(total_num_heads))
else:
self.remaining_heads = remaining_heads # list of indices
self.head_dim = embed_dim // total_num_heads
super().__init__(embed_dim, len(self.remaining_heads), self.head_dim, dropout, prune_heads, prune_layer)
self.has_relative_attention_bias = has_relative_attention_bias
self.num_buckets = num_buckets
self.max_distance = max_distance
if has_relative_attention_bias:
self.rel_attn_embed = nn.Embedding(num_buckets, total_num_heads)
else:
self.rel_attn_embed = None
# override linear layers to customize bias
self.k_proj = nn.Linear(embed_dim, len(self.remaining_heads) * self.head_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, len(self.remaining_heads) * self.head_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, len(self.remaining_heads) * self.head_dim, bias=bias)
self.out_proj = nn.Linear(len(self.remaining_heads) * self.head_dim, embed_dim, bias=bias)
self.gru_rel_pos = gru_rel_pos
if self.gru_rel_pos:
self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8)
self.gru_rel_pos_const = nn.Parameter(torch.ones(1, total_num_heads, 1, 1))
self.has_position_bias = True
def compute_bias(self, query_length: int, key_length: int) -> Tensor:
"""Compute relative position embeddings for WavLM model.
Args:
query_length (int): Query position can take values between 0 and ``query_length - 1``.
key_length (int): Key position can take values between 0 and ``key_length - 1``.
Returns:
Tensor of shape `(num_heads, query_length, key_length)`, relative positions embeddings
"""
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
relative_position = memory_position - context_position # Shape (query_length, key_length)
relative_position_bucket = self._relative_positions_bucket(relative_position, bidirectional=True)
relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device)
values = self.rel_attn_embed(relative_position_bucket) # Shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1])
return values
def _relative_positions_bucket(self, relative_positions: Tensor, bidirectional: bool = True):
"""Compute relative position buckets for WavLM model. Computation similar to formula (5) in WavLM
paper :cite:`chen2022wavlm`.
Args:
relative_positions (Tensor): Relative offsets between query and key positions,
of shape ``(query_length, key_length)``.
bidirectional (bool): If ``True``, values will be filled both above and below the diagonal in the resulting
matrix. If ``False``, the elements above the diagonal (i.e. with negative relative offsets) will be set
to zero. (Default ``True``)
Returns:
Tensor of shape ``(query_length, key_length)`` filled bucketed values of with relative positions.
"""
num_buckets = self.num_buckets
max_distance = self.max_distance
# Shape (query_length, key_length)
relative_buckets = torch.zeros_like(relative_positions, dtype=torch.long)
if bidirectional:
num_buckets = num_buckets // 2
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
relative_positions = torch.abs(relative_positions)
else:
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
max_exact = num_buckets // 2
is_small = relative_positions < max_exact
relative_postion_if_large = max_exact + (
torch.log(relative_positions.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_postion_if_large = torch.min(
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
return relative_buckets
def forward(
self,
query: Tensor,
attention_mask: Optional[Tensor] = None,
position_bias: Optional[Tensor] = None,
key_padding_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
"""
Args:
query (Tensor): Input of shape ``(batch_size, src_len, embed_dim)``.
key_padding_mask (Tensor or None, optional): Mask to exclude keys that are pads, of shape
`(batch, src_len)`, where padding elements are indicated by 1s. (Default: ``None``)
attn_mask: Needs to be ``None``. The argument exists for compatibility with
``EncoderLayer``. (Default: ``None``)
position_bias (Tensor or None, optional): Position bias of shape
``(batch_size * num_heads, src_len, src_len)``. When used inside WavLM model encoder, will be
generated in the first layer and then passed from each encoder layer to the next one.
(Default: ``None``)
Returns:
attn_output (Tensor): Attention output of shape ``(batch_size, src_len, embed_dim)``.
position_bias (Tensor or None): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``.
"""
bsz, seq_len, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert key_padding_mask is None
# only for the first layer
if self.rel_attn_embed is not None and position_bias is None:
position_bias = self.compute_bias(seq_len, seq_len)
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.total_num_heads, seq_len, seq_len)
attn_mask_rel_pos: Optional[Tensor] = None
if position_bias is not None:
attn_mask_rel_pos = position_bias
if self.gru_rel_pos: # Apply gating on relative position bias
query_layer = query.view(bsz, seq_len, self.total_num_heads, -1)
query_layer = query_layer.permute(0, 2, 1, 3)
gate_a, gate_b = torch.sigmoid(
self.gru_rel_pos_linear(query_layer).view(bsz, self.total_num_heads, seq_len, 2, 4).sum(-1, keepdim=False)
).chunk(2, dim=-1)
gate_a_1 = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0
attn_mask_rel_pos = gate_a_1.view(bsz * self.total_num_heads, -1, 1) * position_bias
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, seq_len, seq_len))
attn_mask_rel_pos = attn_mask_rel_pos.reshape(bsz, self.total_num_heads, seq_len, seq_len)[:, self.remaining_heads, :, :]
attn_mask = attn_mask_rel_pos
if attention_mask is not None:
attn_mask = attn_mask + attention_mask
if key_padding_mask is not None:
attn_mask = attn_mask.masked_fill(
key_padding_mask.reshape(bsz, 1, 1, seq_len),
float("-inf")
)
attn_output, _ = super().forward(query, attention_mask=attn_mask)
return attn_output, position_bias
def prune(self):
new_config = {
"use_attention": True,
"remaining_heads": self.remaining_heads,
}
if self.hard_concrete_for_layer is not None:
assert not self.hard_concrete_for_layer.training
layer_mask = self.hard_concrete_for_layer() # (1,)
self.out_proj.weight.data *= layer_mask
self.out_proj.bias.data *= layer_mask
if layer_mask == 0:
new_config["use_attention"] = False
self.hard_concrete_for_layer = None
if self.hard_concrete_for_heads is not None:
assert not self.hard_concrete_for_heads.training
head_mask = self.hard_concrete_for_heads() # (num_heads,)
new_config["remaining_heads"] = head_mask.nonzero().squeeze(-1).tolist()
if len(new_config["remaining_heads"]) == 0:
new_config["use_attention"] = False
else:
full_mask = head_mask.repeat_interleave(self.head_dim)
full_index = full_mask.nonzero().squeeze(-1) # 1D
prune_linear_layer(self.k_proj, full_index, "output")
prune_linear_layer(self.v_proj, full_index, "output")
prune_linear_layer(self.q_proj, full_index, "output")
self.out_proj.weight.data *= full_mask
prune_linear_layer(self.out_proj, full_index, "input")
self.hard_concrete_for_heads = None
return new_config
class FeedForward(Module):
"""Layer that follows attention layer in encoder layer."""
def __init__(
self,
io_features: int,
intermediate_features: int,
intermediate_dropout: float,
output_dropout: float,
prune_intermediate: bool = False,
prune_layer: bool = False,
):
super().__init__()
self.intermediate_dense = nn.Linear(io_features, intermediate_features)
self.intermediate_dropout = nn.Dropout(intermediate_dropout)
self.output_dense = nn.Linear(intermediate_features, io_features)
self.output_dropout = nn.Dropout(output_dropout)
if prune_intermediate:
self.hard_concrete_for_intermediate = HardConcrete(
n_in=intermediate_features, init_mean=0.5
)
else:
self.hard_concrete_for_intermediate = None
if prune_layer:
self.hard_concrete_for_layer = HardConcrete(n_in=1, init_mean=0.01)
else:
self.hard_concrete_for_layer = None
def forward(self, x):
"""
Args:
x (Tensor): shape: `(batch, sequence_length, io_features)`
Returns:
x (Tensor): shape: `(batch, sequence_length, io_features)`
"""
x = self.intermediate_dense(x)
x = torch.nn.functional.gelu(x)
x = self.intermediate_dropout(x)
if self.hard_concrete_for_intermediate is not None:
intermediate_mask = self.hard_concrete_for_intermediate() # (intermediate_features,)
x = x * intermediate_mask
x = self.output_dense(x)
x = self.output_dropout(x)
if self.hard_concrete_for_layer is not None:
layer_mask = self.hard_concrete_for_layer() # (1,)
x = x * layer_mask
return x
def get_num_params(self):
io_features = self.intermediate_dense.in_features
if self.hard_concrete_for_intermediate is not None:
intermediate_features = self.hard_concrete_for_intermediate.l0_norm()
else:
intermediate_features = self.intermediate_dense.out_features
num_params = (io_features + 1) * intermediate_features + (intermediate_features + 1) * io_features
if self.hard_concrete_for_layer is not None:
num_params *= self.hard_concrete_for_layer.l0_norm()
return num_params
def prune(self):
new_config = {
"use_feed_forward": True,
"ff_interm_features": self.intermediate_dense.out_features
}
if self.hard_concrete_for_layer is not None:
assert not self.hard_concrete_for_layer.training
layer_mask = self.hard_concrete_for_layer()
self.output_dense.weight.data *= layer_mask
self.output_dense.bias.data *= layer_mask
if layer_mask == 0:
new_config["use_feed_forward"] = False
self.hard_concrete_for_layer = None
if self.hard_concrete_for_intermediate is not None:
assert not self.hard_concrete_for_intermediate.training
interm_mask = self.hard_concrete_for_intermediate()
interm_index = interm_mask.nonzero().squeeze(-1) # NOTE: must specify dim=-1
new_config["ff_interm_features"] = len(interm_index)
if new_config["ff_interm_features"] == 0:
new_config["use_feed_forward"] = False
else:
prune_linear_layer(self.intermediate_dense, interm_index, "output")
self.output_dense.weight.data *= interm_mask
prune_linear_layer(self.output_dense, interm_index, "input")
self.hard_concrete_for_intermediate = None
return new_config
class EncoderLayer(Module):
"""A layer unit in encoder. Combines multihead self attention and feed forward."""
def __init__(
self,
attention: Optional[Module], # can be None if the entire layer is pruned
dropout: float,
layer_norm_first: bool,
feed_forward: Optional[Module], # can be None if the entire layer is pruned
embed_dim: int,
):
super().__init__()
self.attention = attention
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(embed_dim)
self.layer_norm_first = layer_norm_first
self.feed_forward = feed_forward
self.final_layer_norm = nn.LayerNorm(embed_dim)
self.embed_dim = embed_dim
def forward(
self,
x: Tensor,
attention_mask: Optional[Tensor] = None,
position_bias: Optional[Tensor] = None,
key_padding_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
"""
Args:
x (Tensor): Input of shape ``(batch, sequence_length, embed_dim)``.
attention_mask (Tensor or ``None``, optional): attention mask
of shape ``(batch, 1, sequence_length, sequence_length)``. (Default: ``None``)
position_bias (Tensor or ``None``, optional): position bias of shape
``(batch_size * num_heads, src_len, src_len)``.
Only necessary for WavLM model, ``None`` otherwise. (Default: ``None``)
key_padding_mask (Tensor or ``None``, optional): key padding mask of shape ``(batch_size, src_len)``.
Only used for WavLM model, ignored otherwise. (Default: ``None``)
Returns:
(x, position_bias): Shapes are the same as in the input. Position bias is only relevant for WaLM model,
``None`` otherwise.
"""
if self.attention is not None:
residual = x
if self.layer_norm_first:
x = self.layer_norm(x)
x, position_bias = self.attention(
x, attention_mask=attention_mask, position_bias=position_bias, key_padding_mask=key_padding_mask
)
x = self.dropout(x)
x = residual + x
if self.layer_norm_first:
if self.feed_forward is not None:
x = x + self.feed_forward(self.final_layer_norm(x))
else:
# NOTE: for post norm, the layer norms should always be applied even if the layers are pruned.
x = self.layer_norm(x)
if self.feed_forward is not None:
x = x + self.feed_forward(x)
x = self.final_layer_norm(x)
return x, position_bias
def get_num_params(self):
num_params = self.embed_dim * 2 * 2 # two layer norms
if self.attention is not None:
num_params += self.attention.get_num_params()
if self.feed_forward is not None:
num_params += self.feed_forward.get_num_params()
return num_params
class Transformer(Module):
def __init__(
self,
pos_conv_embed: Module,
dropout: float,
layers: Module,
layer_norm_first: bool,
layer_drop: float,
):
super().__init__()
self.pos_conv_embed = pos_conv_embed
self.layer_norm = nn.LayerNorm(pos_conv_embed.embed_dim)
self.layer_norm_first = layer_norm_first
self.layer_drop = layer_drop
self.dropout = nn.Dropout(dropout)
self.layers = layers
def _preprocess(self, x: Tensor):
x = x + self.pos_conv_embed(x)
if self.layer_norm_first:
x = self.layer_norm(x)
x = self.dropout(x)
return x
def forward(
self,
x: Tensor,
attention_mask: Optional[Tensor] = None,
position_bias: Optional[Tensor] = None,
) -> Tensor:
x = self._preprocess(x)
for layer in self.layers:
if not (self.training and torch.rand(1).item() <= self.layer_drop):
x, position_bias = layer(x, attention_mask, position_bias=position_bias)
if not self.layer_norm_first:
x = self.layer_norm(x)
return x
def get_intermediate_outputs(
self,
x: Tensor,
attention_mask: Optional[Tensor] = None,
num_layers: Optional[int] = None,
position_bias: Optional[Tensor] = None,
) -> List[Tensor]:
if num_layers is not None:
if not 0 < num_layers <= len(self.layers):
raise ValueError(f"`num_layers` must be between [1, {len(self.layers)}]")
ret: List[Tensor] = []
x = self._preprocess(x)
for layer in self.layers:
x, position_bias = layer(x, attention_mask, position_bias=position_bias)
ret.append(x)
if num_layers is not None and len(ret) >= num_layers:
return ret
return ret
def get_num_params(self):
# pos_conv_embed and layer_norm
num_params = sum(p.numel() for p in self.pos_conv_embed.parameters()) + self.pos_conv_embed.embed_dim * 2
for layer in self.layers:
num_params += layer.get_num_params()
return num_params
def prune(self):
new_config = defaultdict(list)
for layer in self.layers:
attention_config = layer.attention.prune()
new_config["use_attention"].append(attention_config["use_attention"])
if "remaining_heads" in attention_config:
new_config["remaining_heads"].append(attention_config["remaining_heads"])
else:
new_config["num_heads"].append(attention_config["num_heads"])
if not attention_config["use_attention"]:
layer.attention = None
ff_config = layer.feed_forward.prune()
new_config["use_feed_forward"].append(ff_config["use_feed_forward"])
new_config["ff_interm_features"].append(ff_config["ff_interm_features"])
if not ff_config["use_feed_forward"]:
layer.feed_forward = None
return new_config
class Encoder(Module):
def __init__(
self,
feature_projection: Module,
transformer: Module,
):
super().__init__()
self.feature_projection = feature_projection
self.transformer = transformer
def _preprocess(
self,
features: Tensor,
lengths: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
x = self.feature_projection(features)
mask: Optional[Tensor] = None
if lengths is not None:
batch_size, max_len, _ = x.shape
# create mask for padded elements and zero-out them
mask = torch.arange(max_len, device=lengths.device).expand(batch_size, max_len) >= lengths[:, None]
x[mask] = 0.0
# extend the mask to attention shape and set weight
mask = -10000.0 * mask[:, None, None, :].to(dtype=features.dtype)
mask = mask.expand(batch_size, 1, max_len, max_len)
return x, mask
def forward(
self,
features: Tensor,
lengths: Optional[Tensor] = None,
) -> Tensor:
x, mask = self._preprocess(features, lengths)
x = self.transformer(x, attention_mask=mask)
return x
def extract_features(
self,
features: Tensor,
lengths: Optional[Tensor] = None,
num_layers: Optional[int] = None,
) -> List[Tensor]:
x, masks = self._preprocess(features, lengths)
interm = self.transformer.get_intermediate_outputs(x, attention_mask=masks, num_layers=num_layers)
return [x] + interm
def get_num_params(self, in_features):
"""Calculate the current model size."""
feature_projection_size = self.feature_projection.get_num_params(in_features)
transformer_size = self.transformer.get_num_params()
return feature_projection_size + transformer_size
def prune(self, conv_out_index):
"""In-place pruning of submodules."""
prune_layer_norm(self.feature_projection.layer_norm, conv_out_index)
prune_linear_layer(self.feature_projection.projection, conv_out_index, "input")
transformer_config = self.transformer.prune()
return transformer_config
################################################################################
def _get_feature_extractor(
norm_mode: str,
shapes: List[Tuple[int, int, int]],
bias: bool,
prune_conv_channels: bool = False,
) -> FeatureExtractor:
"""
Args:
norm_mode (str):
Either "group_norm" or "layer_norm".
If "group_norm", then a single normalization is applied
in the first convolution block. Otherwise, all the convolution
blocks will have layer normalization.
This option corresponds to "extractor_mode" from fairseq.
Expected values are "group_norm" for Base arch, and
"layer_norm" for Large arch.
shapes (list of tuple of int):
Configuration of convolution layers. List of convolution configuration,
i.e. ``[(output_channel, kernel_size, stride), ...]``
This option corresponds to "conv_feature_layers" from fairseq.
Expected values are
``[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2``
for all the architectures.
bias (bool):
Whether to include bias term to each convolution operation.
This option corresponds to "conv_bias" from fairseq.
Expected values are False for Base arch, and True for Large arch.
See Also:
* Original implementation
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L666-L733
* "extractor_mode"
- Def and base:
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L38-L45
- Large:
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L52
* "conv_feature_layers"
- Def, base and large:
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L94-L100
* "conv_bias"
- Def and base:
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L101-L103
- Large:
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L61
"""
if norm_mode not in ["group_norm", "layer_norm"]:
raise ValueError("Invalid norm mode")
blocks = []
in_channels = 1
for i, (out_channels, kernel_size, stride) in enumerate(shapes):
normalization = None
if norm_mode == "group_norm" and i == 0:
normalization = nn.GroupNorm(
num_groups=out_channels,
num_channels=out_channels,
affine=True,
)
elif norm_mode == "layer_norm":
normalization = LayerNorm(
normalized_shape=out_channels,
elementwise_affine=True,
)
blocks.append(
ConvLayerBlock(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
bias=bias,
layer_norm=normalization,
prune_conv_channels=prune_conv_channels,
)
)
in_channels = out_channels
return FeatureExtractor(nn.ModuleList(blocks))
def _get_encoder(
in_features: int,
embed_dim: int,
dropout_input: float,
pos_conv_kernel: int,
pos_conv_groups: int,
num_layers: int,
use_attention: List[bool],
use_feed_forward: List[bool],
num_heads: List[int],
head_dim: int,
attention_dropout: float,
ff_interm_features: List[int],
ff_interm_dropout: float,
dropout: float,
layer_norm_first: bool,
layer_drop: float,
prune_attention_heads: bool = False,
prune_attention_layer: bool = False,
prune_feed_forward_intermediate: bool = False,
prune_feed_forward_layer: bool = False,
) -> Encoder:
"""
Args:
in_features (int): The number of input features.
embed_dim (int):
The dimension of embedding.
This option corresponds to "encoder_embed_dim" from fairseq.
Expected values are 768 for Base arch, and 1024 for Large arch.
dropout_input (float):
The dropout probability applied after the input feature is projected
to ``embed_dim``.
This option corresponds to "dropout_input" from fairseq.
Expected values are 0.1 for both Base and Large arch.
pos_conv_kernel (int):
The kernel size of convolutional positional embeddings.
This option corresponds to "conv_pos" from fairseq.
Expected values are 128 for both Base and Large arch.
pos_conv_groups (int):
The number of groups of convolutional positional embeddings.
This option corresponds to "conv_pos_groups" from fairseq.
Expected values are 16 for both Base and Large arch.
num_layers (int):
The number of self attention layers in transformer block.
This option corresponds to "encoder_layers" from fairseq.
Expected values are 12 for Base and 24 for Large arch.
num_heads (int):
The number of heads in self attention layers.
This option corresponds to "encoder_attention_heads" from fairseq.
Expected values are 12 for Base and 16 for Large arch.
attention_dropout (float):
The dropout probability applied after softmax in self-attention layer.
This option corresponds to "attention_dropout" from fairseq.
Expected values are 0.1 for Base and 0.0 for Large arch.
ff_interm_features (int):
The dimension of hidden features in feed forward layer.
This option corresponds to "encoder_ffn_embed_dim" from fairseq.
Expected values are 3072 for Base and 4096 for Large arch.
ff_interm_dropout (float):
The dropout probability applied in feedforward layer.
This option correspinds to "activation_dropout" from fairseq.
Expected values are 0.1 for both Base and Large arch.
dropout (float):
The dropout probability applied at the end of feed forward layer.
This option corresponds to "dropout" from fairseq.
Expected values are 0.1 for Base and 0.0 for Large arch.
layer_norm_first (bool):
Control the order of layer norm in transformer layer and each encoder layer.
If True, in transformer layer, layer norm is applied before features are fed
to encoder layers. In encoder layer, two layer norms are applied before and after
self attention.
If False, in transformer layer, layer norm is applied after features are fed
to encoder layers. In encoder layer, two layer norms are applied after self
attention, before and after feed forward.
This option corresponds to "layer_norm_first" from fairseq.
Expected values are False for Base and True for Large arch.
layer_drop (float):
Probability to drop each encoder layer during training.
This option corresponds to "layerdrop" from fairseq.
Expected values are 0.1 for both Base and Large arch.
See Also:
* "encoder_embed_dim"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L49-L51
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L64
* "dropout_input"
- Def, base and large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L75-L78
* "conv_pos"
- Def, base and large
NOTE: The description is wrong.
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L204-L207
- Usage
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L756
* "conv_pos_groups"
- Def, base and large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L208-L211
* "encoder_layers"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L46-L48
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L63
* "encoder_attention_heads"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L55-L57
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L66
* "attention_dropout"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L66-L68
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L60
* "encoder_ffn_embed_dim"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L52-L54
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L65
* "activation_dropout"
- Def
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L69-L71
- Base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/finetuning/base_960h.yaml#L55
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/finetuning/vox_960h.yaml#L55
* "dropout"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L63-L65
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L59
* "layer_norm_first"
- Def and base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L91-L93
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml#L53
* "layerdrop"
- Def
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L72-L74
- Base
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/finetuning/base_960h.yaml#L54
- Large
https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/examples/wav2vec/config/finetuning/vox_960h.yaml#L54
"""
feature_projection = FeatureProjection(in_features, embed_dim, dropout_input)
pos_conv = ConvolutionalPositionalEmbedding(embed_dim, pos_conv_kernel, pos_conv_groups)
# Original impl
# https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L768-L782
encoder_layers = nn.ModuleList()
for idx in range(num_layers):
if use_attention[idx]:
attention = SelfAttention(
embed_dim=embed_dim,
num_heads=num_heads[idx],
head_dim=head_dim,
dropout=attention_dropout,
prune_heads=prune_attention_heads,
prune_layer=prune_attention_layer,
)
else:
attention = None
if use_feed_forward[idx]:
feed_forward = FeedForward(
io_features=embed_dim,
intermediate_features=ff_interm_features[idx],
intermediate_dropout=ff_interm_dropout,
output_dropout=dropout,
prune_intermediate=prune_feed_forward_intermediate,
prune_layer=prune_feed_forward_layer,
)
else:
feed_forward = None
encoder_layers.append(
EncoderLayer(
attention=attention,
dropout=dropout,
layer_norm_first=layer_norm_first,
feed_forward=feed_forward,
embed_dim=embed_dim,
)
)
transformer = Transformer(
pos_conv_embed=pos_conv,
dropout=dropout,
layers=encoder_layers,
layer_norm_first=not layer_norm_first,
layer_drop=layer_drop,
)
return Encoder(feature_projection, transformer)
def _get_wavlm_encoder(
in_features: int,
embed_dim: int,
dropout_input: float,
pos_conv_kernel: int,
pos_conv_groups: int,
num_layers: int,
use_attention: List[bool],
use_feed_forward: List[bool],
total_num_heads: List[int],
remaining_heads: List[List[int]],
num_buckets: int,
max_distance: int,
attention_dropout: float,
ff_interm_features: List[int],
ff_interm_dropout: float,
dropout: float,
layer_norm_first: bool,
layer_drop: float,
prune_attention_heads: bool = False,
prune_attention_layer: bool = False,
prune_feed_forward_intermediate: bool = False,
prune_feed_forward_layer: bool = False,
) -> Encoder:
"""
Construct encoder for WavLM model :cite:`chen2022wavlm`. The structure of the encoder and most of the argments are
the same as in :py:func:`_get_encoder` so refer there for documentation. The only difference from Wav2Vec2 encoder
is usage of `WavLMSelfAttention` instead of `SelfAttention` and two additional parameters: `num_buckets` and
`max_distance`.
Args:
in_features (int): See :py:func:`_get_encoder`.
embed_dim (int): See :py:func:`_get_encoder`.
dropout_input (float): See :py:func:`_get_encoder`.
pos_conv_kernel (int): See :py:func:`_get_encoder`.
pos_conv_groups (int): See :py:func:`_get_encoder`.
num_layers (int): See :py:func:`_get_encoder`.
num_heads (int): See :py:func:`_get_encoder`.
num_buckets (int): Number of buckets for relative position embedding.
max_distance (int): Maximum distance for relative position embedding.
attention_dropout (float): See :py:func:`_get_encoder`.
ff_interm_features (int): See :py:func:`_get_encoder`.
ff_interm_dropout (float): See :py:func:`_get_encoder`.
dropout (float): See :py:func:`_get_encoder`.
layer_norm_first (bool): See :py:func:`_get_encoder`.
layer_drop (float): See :py:func:`_get_encoder`.
"""
feature_projection = FeatureProjection(in_features, embed_dim, dropout_input)
pos_conv = ConvolutionalPositionalEmbedding(embed_dim, pos_conv_kernel, pos_conv_groups)
# Original impl
# https://github.com/pytorch/fairseq/blob/425c36eafff535fe7337f8bdd5ace22ebacc78cb/fairseq/models/wav2vec/wav2vec2.py#L768-L782
encoder_layers = nn.ModuleList()
for i in range(num_layers):
if use_attention[i]:
attention = WavLMSelfAttention(
embed_dim=embed_dim,
total_num_heads=total_num_heads[i],
remaining_heads=remaining_heads[i],
dropout=attention_dropout,
has_relative_attention_bias=(i == 0), # Position embedding is only necessary in the first layer.
num_buckets=num_buckets,
max_distance=max_distance,
prune_heads=prune_attention_heads,
prune_layer=prune_attention_layer,
)
else:
attention = None
if use_feed_forward[i]:
feed_forward = FeedForward(
io_features=embed_dim,
intermediate_features=ff_interm_features[i],
intermediate_dropout=ff_interm_dropout,
output_dropout=dropout,
prune_intermediate=prune_feed_forward_intermediate,
prune_layer=prune_feed_forward_layer,
)
else:
feed_forward = None
encoder_layers.append(
EncoderLayer(
attention=attention,
dropout=dropout,
layer_norm_first=layer_norm_first,
feed_forward=feed_forward,
embed_dim=embed_dim,
)
)
transformer = Transformer(
pos_conv_embed=pos_conv,
dropout=dropout,
layers=encoder_layers,
layer_norm_first=not layer_norm_first,
layer_drop=layer_drop,
)
return Encoder(feature_projection, transformer)
def _get_padding_mask(input: Tensor, lengths: Tensor) -> Tensor:
"""Generate the padding mask given the padded input and the lengths Tensors.
Args:
input (Tensor): The padded Tensor of dimension `[batch, max_len, frequency]`.
lengths (Tensor): The lengths Tensor of dimension `[batch,]`.
Returns:
(Tensor): The padding mask.
"""
batch_size, max_len, _ = input.shape
mask = torch.arange(max_len, device=lengths.device).expand(batch_size, max_len) >= lengths[:, None]
return mask
class GradMultiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, scale):
ctx.scale = scale
res = x.new(x)
return res
@staticmethod
def backward(ctx, grad):
return grad * ctx.scale, None
|