Spaces:
Runtime error
Runtime error
File size: 2,805 Bytes
6cf4883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from typing import List, Tuple
from einops import rearrange
import numpy as np, os, torch
from PIL import Image
from torchvision.utils import make_grid
import time
def get_output_folder(output_path, batch_folder):
out_path = os.path.join(output_path,time.strftime('%Y-%m'))
if batch_folder != "":
out_path = os.path.join(out_path, batch_folder)
os.makedirs(out_path, exist_ok=True)
return out_path
def save_samples(
args, x_samples: torch.Tensor, seed: int, n_rows: int
) -> Tuple[Image.Image, List[Image.Image]]:
"""Function to save samples to disk.
Args:
args: Stable deforum diffusion arguments.
x_samples: Samples to save.
seed: Seed for the experiment.
n_rows: Number of rows in the grid.
Returns:
A tuple of the grid image and a list of the generated images.
( grid_image, generated_images )
"""
# save samples
images = []
grid_image = None
if args.display_samples or args.save_samples:
for index, x_sample in enumerate(x_samples):
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
images.append(Image.fromarray(x_sample.astype(np.uint8)))
if args.save_samples:
images[-1].save(
os.path.join(
args.outdir, f"{args.timestring}_{index:02}_{seed}.png"
)
)
# save grid
if args.display_grid or args.save_grid:
grid = torch.stack([x_samples], 0)
grid = rearrange(grid, "n b c h w -> (n b) c h w")
grid = make_grid(grid, nrow=n_rows, padding=0)
# to image
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
grid_image = Image.fromarray(grid.astype(np.uint8))
if args.save_grid:
grid_image.save(
os.path.join(args.outdir, f"{args.timestring}_{seed}_grid.png")
)
# return grid_image and individual sample images
return grid_image, images
def save_image(image, image_type, filename, args, video_args, root):
if video_args.store_frames_in_ram:
root.frames_cache.append({'path':os.path.join(args.outdir, filename), 'image':image, 'image_type':image_type})
else:
image.save(os.path.join(args.outdir, filename))
import cv2, gc
def reset_frames_cache(root):
root.frames_cache = []
gc.collect()
def dump_frames_cache(root):
for image_cache in root.frames_cache:
if image_cache['image_type'] == 'cv2':
cv2.imwrite(image_cache['path'], image_cache['image'])
elif image_cache['image_type'] == 'PIL':
image_cache['image'].save(image_cache['path'])
# do not reset the cache since we're going to add frame erasing later function #TODO
|