Spaces:
Runtime error
Runtime error
File size: 10,313 Bytes
6cf4883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import numpy as np
import cv2
from PIL import Image
from .prompt import split_weighted_subprompts
from .load_images import load_img, prepare_mask, check_mask_for_errors
from .webui_sd_pipeline import get_webui_sd_pipeline
from .animation import sample_from_cv2, sample_to_cv2
from .rich import console
#Webui
import cv2
from .animation import sample_from_cv2, sample_to_cv2
from modules import processing, sd_models
from modules.shared import opts, sd_model
from modules.processing import process_images, StableDiffusionProcessingTxt2Img
from .deforum_controlnet import is_controlnet_enabled, process_txt2img_with_controlnet, process_img2img_with_controlnet
import math, json, itertools
import requests
def load_mask_latent(mask_input, shape):
# mask_input (str or PIL Image.Image): Path to the mask image or a PIL Image object
# shape (list-like len(4)): shape of the image to match, usually latent_image.shape
if isinstance(mask_input, str): # mask input is probably a file name
if mask_input.startswith('http://') or mask_input.startswith('https://'):
mask_image = Image.open(requests.get(mask_input, stream=True).raw).convert('RGBA')
else:
mask_image = Image.open(mask_input).convert('RGBA')
elif isinstance(mask_input, Image.Image):
mask_image = mask_input
else:
raise Exception("mask_input must be a PIL image or a file name")
mask_w_h = (shape[-1], shape[-2])
mask = mask_image.resize(mask_w_h, resample=Image.LANCZOS)
mask = mask.convert("L")
return mask
def isJson(myjson):
try:
json.loads(myjson)
except ValueError as e:
return False
return True
# Add pairwise implementation here not to upgrade
# the whole python to 3.10 just for one function
def pairwise_repl(iterable):
a, b = itertools.tee(iterable)
next(b, None)
return zip(a, b)
def generate(args, anim_args, loop_args, controlnet_args, root, frame = 0, return_sample=False, sampler_name=None):
assert args.prompt is not None
# Setup the pipeline
p = get_webui_sd_pipeline(args, root, frame)
p.prompt, p.negative_prompt = split_weighted_subprompts(args.prompt, frame)
if not args.use_init and args.strength > 0 and args.strength_0_no_init:
print("\nNo init image, but strength > 0. Strength has been auto set to 0, since use_init is False.")
print("If you want to force strength > 0 with no init, please set strength_0_no_init to False.\n")
args.strength = 0
processed = None
mask_image = None
init_image = None
image_init0 = None
if loop_args.use_looper:
# TODO find out why we need to set this in the init tab
if args.strength == 0:
raise RuntimeError("Strength needs to be greater than 0 in Init tab and strength_0_no_init should *not* be checked")
if args.seed_behavior != "schedule":
raise RuntimeError("seed_behavior needs to be set to schedule in under 'Keyframes' tab --> 'Seed scheduling'")
if not isJson(loop_args.imagesToKeyframe):
raise RuntimeError("The images set for use with keyframe-guidance are not in a proper JSON format")
args.strength = loop_args.imageStrength
tweeningFrames = loop_args.tweeningFrameSchedule
blendFactor = .07
colorCorrectionFactor = loop_args.colorCorrectionFactor
jsonImages = json.loads(loop_args.imagesToKeyframe)
framesToImageSwapOn = list(map(int, list(jsonImages.keys())))
# find which image to show
frameToChoose = 0
for swappingFrame in framesToImageSwapOn[1:]:
frameToChoose += (frame >= int(swappingFrame))
#find which frame to do our swapping on for tweening
skipFrame = 25
for fs, fe in pairwise_repl(framesToImageSwapOn):
if fs <= frame <= fe:
skipFrame = fe - fs
if frame % skipFrame <= tweeningFrames: # number of tweening frames
blendFactor = loop_args.blendFactorMax - loop_args.blendFactorSlope*math.cos((frame % tweeningFrames) / (tweeningFrames / 2))
init_image2, _ = load_img(list(jsonImages.values())[frameToChoose],
shape=(args.W, args.H),
use_alpha_as_mask=args.use_alpha_as_mask)
image_init0 = list(jsonImages.values())[0]
else: # they passed in a single init image
image_init0 = args.init_image
available_samplers = {
'euler a':'Euler a',
'euler':'Euler',
'lms':'LMS',
'heun':'Heun',
'dpm2':'DPM2',
'dpm2 a':'DPM2 a',
'dpm++ 2s a':'DPM++ 2S a',
'dpm++ 2m':'DPM++ 2M',
'dpm++ sde':'DPM++ SDE',
'dpm fast':'DPM fast',
'dpm adaptive':'DPM adaptive',
'lms karras':'LMS Karras' ,
'dpm2 karras':'DPM2 Karras',
'dpm2 a karras':'DPM2 a Karras',
'dpm++ 2s a karras':'DPM++ 2S a Karras',
'dpm++ 2m karras':'DPM++ 2M Karras',
'dpm++ sde karras':'DPM++ SDE Karras'
}
if sampler_name is not None:
if sampler_name in available_samplers.keys():
args.sampler = available_samplers[sampler_name]
if args.checkpoint is not None:
info = sd_models.get_closet_checkpoint_match(args.checkpoint)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {args.checkpoint}")
sd_models.reload_model_weights(info=info)
if args.init_sample is not None:
# TODO: cleanup init_sample remains later
img = args.init_sample
init_image = img
image_init0 = img
if loop_args.use_looper and isJson(loop_args.imagesToKeyframe):
init_image = Image.blend(init_image, init_image2, blendFactor)
correction_colors = Image.blend(init_image, init_image2, colorCorrectionFactor)
p.color_corrections = [processing.setup_color_correction(correction_colors)]
# this is the first pass
elif loop_args.use_looper or (args.use_init and ((args.init_image != None and args.init_image != ''))):
init_image, mask_image = load_img(image_init0, # initial init image
shape=(args.W, args.H),
use_alpha_as_mask=args.use_alpha_as_mask)
else:
if anim_args.animation_mode != 'Interpolation':
print(f"Not using an init image (doing pure txt2img)")
p_txt = StableDiffusionProcessingTxt2Img(
sd_model=sd_model,
outpath_samples=root.tmp_deforum_run_duplicated_folder,
outpath_grids=root.tmp_deforum_run_duplicated_folder,
prompt=p.prompt,
styles=p.styles,
negative_prompt=p.negative_prompt,
seed=p.seed,
subseed=p.subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=p.sampler_name,
batch_size=p.batch_size,
n_iter=p.n_iter,
steps=p.steps,
cfg_scale=p.cfg_scale,
width=p.width,
height=p.height,
restore_faces=p.restore_faces,
tiling=p.tiling,
enable_hr=None,
denoising_strength=None,
)
# print dynamic table to cli
print_generate_table(args, anim_args, p_txt)
if is_controlnet_enabled(controlnet_args):
processed = process_txt2img_with_controlnet(p, args, anim_args, loop_args, controlnet_args, root, frame)
else:
processed = processing.process_images(p_txt)
if processed is None:
# Mask functions
if args.use_mask:
mask = args.mask_image
#assign masking options to pipeline
if mask is not None:
p.inpainting_mask_invert = args.invert_mask
p.inpainting_fill = args.fill
p.inpaint_full_res= args.full_res_mask
p.inpaint_full_res_padding = args.full_res_mask_padding
else:
mask = None
assert not ( (mask is not None and args.use_mask and args.overlay_mask) and (args.init_sample is None and init_image is None)), "Need an init image when use_mask == True and overlay_mask == True"
p.init_images = [init_image]
p.image_mask = mask
p.image_cfg_scale = args.pix2pix_img_cfg_scale
# print dynamic table to cli
print_generate_table(args, anim_args, p)
if is_controlnet_enabled(controlnet_args):
processed = process_img2img_with_controlnet(p, args, anim_args, loop_args, controlnet_args, root, frame)
else:
processed = processing.process_images(p)
if root.initial_info == None:
root.initial_seed = processed.seed
root.initial_info = processed.info
if root.first_frame == None:
root.first_frame = processed.images[0]
results = processed.images[0]
return results
def print_generate_table(args, anim_args, p):
from rich.table import Table
from rich import box
table = Table(padding=0, box=box.ROUNDED)
field_names = ["Steps", "CFG"]
if anim_args.animation_mode != 'Interpolation':
field_names.append("Denoise")
field_names += ["Subseed", "Subs. str"] * (anim_args.enable_subseed_scheduling)
field_names += ["Sampler"] * anim_args.enable_sampler_scheduling
field_names += ["Checkpoint"] * anim_args.enable_checkpoint_scheduling
for field_name in field_names:
table.add_column(field_name, justify="center")
rows = [str(p.steps), str(p.cfg_scale)]
if anim_args.animation_mode != 'Interpolation':
rows.append(str(p.denoising_strength))
rows += [str(p.subseed), str(p.subseed_strength)] * (anim_args.enable_subseed_scheduling)
rows += [p.sampler_name] * anim_args.enable_sampler_scheduling
rows += [str(args.checkpoint)] * anim_args.enable_checkpoint_scheduling
table.add_row(*rows)
console.print(table) |