File size: 7,972 Bytes
6cf4883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math, os, subprocess
import cv2
import hashlib
import numpy as np
import torch
import gc
import torchvision.transforms as T
from einops import rearrange, repeat
from PIL import Image
from infer import InferenceHelper
from midas.dpt_depth import DPTDepthModel
from midas.transforms import Resize, NormalizeImage, PrepareForNet
import torchvision.transforms.functional as TF
from .general_utils import checksum

class DepthModel():
    def __init__(self, device):
        self.adabins_helper = None
        self.depth_min = 1000
        self.depth_max = -1000
        self.device = device
        self.midas_model = None
        self.midas_transform = None
    
    def load_adabins(self, models_path):
        if not os.path.exists(os.path.join(models_path,'AdaBins_nyu.pt')):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(r"https://cloudflare-ipfs.com/ipfs/Qmd2mMnDLWePKmgfS8m6ntAg4nhV5VkUyAydYBp8cWWeB7/AdaBins_nyu.pt", models_path)
            if checksum(os.path.join(models_path,'AdaBins_nyu.pt')) != "643db9785c663aca72f66739427642726b03acc6c4c1d3755a4587aa2239962746410d63722d87b49fc73581dbc98ed8e3f7e996ff7b9c0d56d0fbc98e23e41a":
                raise Exception(r"Error while downloading AdaBins_nyu.pt. Please download from here: https://drive.google.com/file/d/1lvyZZbC9NLcS8a__YPcUP7rDiIpbRpoF and place in: " + models_path)
        self.adabins_helper = InferenceHelper(models_path=models_path, dataset='nyu', device=self.device)

    def load_midas(self, models_path, half_precision=True):
        if not os.path.exists(os.path.join(models_path, 'dpt_large-midas-2f21e586.pt')):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(r"https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", models_path)
            if checksum(os.path.join(models_path,'dpt_large-midas-2f21e586.pt')) != "fcc4829e65d00eeed0a38e9001770676535d2e95c8a16965223aba094936e1316d569563552a852d471f310f83f597e8a238987a26a950d667815e08adaebc06":
                raise Exception(r"Error while downloading dpt_large-midas-2f21e586.pt. Please download from here: https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt and place in: " + models_path)

        self.midas_model = DPTDepthModel(
            path=f"{models_path}/dpt_large-midas-2f21e586.pt",
            backbone="vitl16_384",
            non_negative=True,
        )
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

        self.midas_transform = T.Compose([
            Resize(
                384, 384,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet()
        ])

        self.midas_model.eval()    
        if self.device == torch.device("cuda"):
            self.midas_model = self.midas_model.to(memory_format=torch.channels_last)
        if half_precision:
            self.midas_model = self.midas_model.half()
        self.midas_model.to(self.device)

    def predict(self, prev_img_cv2, anim_args, half_precision) -> torch.Tensor:
        w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0]

        # predict depth with AdaBins    
        use_adabins = anim_args.midas_weight < 1.0 and self.adabins_helper is not None
        if use_adabins:
            MAX_ADABINS_AREA = 500000
            MIN_ADABINS_AREA = 448*448

            # resize image if too large or too small
            img_pil = Image.fromarray(cv2.cvtColor(prev_img_cv2.astype(np.uint8), cv2.COLOR_RGB2BGR))
            image_pil_area = w*h
            resized = True
            if image_pil_area > MAX_ADABINS_AREA:
                scale = math.sqrt(MAX_ADABINS_AREA) / math.sqrt(image_pil_area)
                depth_input = img_pil.resize((int(w*scale), int(h*scale)), Image.LANCZOS) # LANCZOS is good for downsampling
                print(f"  resized to {depth_input.width}x{depth_input.height}")
            elif image_pil_area < MIN_ADABINS_AREA:
                scale = math.sqrt(MIN_ADABINS_AREA) / math.sqrt(image_pil_area)
                depth_input = img_pil.resize((int(w*scale), int(h*scale)), Image.BICUBIC)
                print(f"  resized to {depth_input.width}x{depth_input.height}")
            else:
                depth_input = img_pil
                resized = False

            # predict depth and resize back to original dimensions
            try:
                with torch.no_grad():
                    _, adabins_depth = self.adabins_helper.predict_pil(depth_input)
                if resized:
                    adabins_depth = TF.resize(
                        torch.from_numpy(adabins_depth), 
                        torch.Size([h, w]),
                        interpolation=TF.InterpolationMode.BICUBIC
                    )
                    adabins_depth = adabins_depth.cpu().numpy()
                adabins_depth = adabins_depth.squeeze()
            except:
                print(f"  exception encountered, falling back to pure MiDaS")
                use_adabins = False
            torch.cuda.empty_cache()

        if self.midas_model is not None:
            # convert image from 0->255 uint8 to 0->1 float for feeding to MiDaS
            img_midas = prev_img_cv2.astype(np.float32) / 255.0
            img_midas_input = self.midas_transform({"image": img_midas})["image"]

            # MiDaS depth estimation implementation
            sample = torch.from_numpy(img_midas_input).float().to(self.device).unsqueeze(0)
            if self.device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)  
                if half_precision:
                    sample = sample.half()
            with torch.no_grad():            
                midas_depth = self.midas_model.forward(sample)
            midas_depth = torch.nn.functional.interpolate(
                midas_depth.unsqueeze(1),
                size=img_midas.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()
            midas_depth = midas_depth.cpu().numpy()
            torch.cuda.empty_cache()

            # MiDaS makes the near values greater, and the far values lesser. Let's reverse that and try to align with AdaBins a bit better.
            midas_depth = np.subtract(50.0, midas_depth)
            midas_depth = midas_depth / 19.0

            # blend between MiDaS and AdaBins predictions
            if use_adabins:
                depth_map = midas_depth*anim_args.midas_weight + adabins_depth*(1.0-anim_args.midas_weight)
            else:
                depth_map = midas_depth

            depth_map = np.expand_dims(depth_map, axis=0)
            depth_tensor = torch.from_numpy(depth_map).squeeze().to(self.device)
        else:
            depth_tensor = torch.ones((h, w), device=self.device)
        
        return depth_tensor

    def save(self, filename: str, depth: torch.Tensor):
        depth = depth.cpu().numpy()
        if len(depth.shape) == 2:
            depth = np.expand_dims(depth, axis=0)
        self.depth_min = min(self.depth_min, depth.min())
        self.depth_max = max(self.depth_max, depth.max())
        print(f"  depth min:{depth.min()} max:{depth.max()}")
        denom = max(1e-8, self.depth_max - self.depth_min)
        temp = rearrange((depth - self.depth_min) / denom * 255, 'c h w -> h w c')
        temp = repeat(temp, 'h w 1 -> h w c', c=3)
        Image.fromarray(temp.astype(np.uint8)).save(filename)
    
    def to(self, device):
        self.device = device
        self.midas_model.to(device)
        if self.adabins_helper is not None:
            self.adabins_helper.to(device)
        gc.collect()
        torch.cuda.empty_cache()