File size: 8,531 Bytes
6cf4883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import base64
import json
import numpy as np
import zlib
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
from fonts.ttf import Roboto
import torch
from modules.shared import opts


class EmbeddingEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, torch.Tensor):
            return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
        return json.JSONEncoder.default(self, obj)


class EmbeddingDecoder(json.JSONDecoder):
    def __init__(self, *args, **kwargs):
        json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)

    def object_hook(self, d):
        if 'TORCHTENSOR' in d:
            return torch.from_numpy(np.array(d['TORCHTENSOR']))
        return d


def embedding_to_b64(data):
    d = json.dumps(data, cls=EmbeddingEncoder)
    return base64.b64encode(d.encode())


def embedding_from_b64(data):
    d = base64.b64decode(data)
    return json.loads(d, cls=EmbeddingDecoder)


def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
    while True:
        seed = (a * seed + c) % m
        yield seed % 255


def xor_block(block):
    g = lcg()
    randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
    return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)


def style_block(block, sequence):
    im = Image.new('RGB', (block.shape[1], block.shape[0]))
    draw = ImageDraw.Draw(im)
    i = 0
    for x in range(-6, im.size[0], 8):
        for yi, y in enumerate(range(-6, im.size[1], 8)):
            offset = 0
            if yi % 2 == 0:
                offset = 4
            shade = sequence[i % len(sequence)]
            i += 1
            draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))

    fg = np.array(im).astype(np.uint8) & 0xF0

    return block ^ fg


def insert_image_data_embed(image, data):
    d = 3
    data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
    data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
    data_np_high = data_np_ >> 4
    data_np_low = data_np_ & 0x0F

    h = image.size[1]
    next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
    next_size = next_size + ((h*d)-(next_size % (h*d)))

    data_np_low = np.resize(data_np_low, next_size)
    data_np_low = data_np_low.reshape((h, -1, d))

    data_np_high = np.resize(data_np_high, next_size)
    data_np_high = data_np_high.reshape((h, -1, d))

    edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
    edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)

    data_np_low = style_block(data_np_low, sequence=edge_style)
    data_np_low = xor_block(data_np_low)
    data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
    data_np_high = xor_block(data_np_high)

    im_low = Image.fromarray(data_np_low, mode='RGB')
    im_high = Image.fromarray(data_np_high, mode='RGB')

    background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
    background.paste(im_low, (0, 0))
    background.paste(image, (im_low.size[0]+1, 0))
    background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))

    return background


def crop_black(img, tol=0):
    mask = (img > tol).all(2)
    mask0, mask1 = mask.any(0), mask.any(1)
    col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
    row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
    return img[row_start:row_end, col_start:col_end]


def extract_image_data_embed(image):
    d = 3
    outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
    black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
    if black_cols[0].shape[0] < 2:
        print('No Image data blocks found.')
        return None

    data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
    data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)

    data_block_lower = xor_block(data_block_lower)
    data_block_upper = xor_block(data_block_upper)

    data_block = (data_block_upper << 4) | (data_block_lower)
    data_block = data_block.flatten().tobytes()

    data = zlib.decompress(data_block)
    return json.loads(data, cls=EmbeddingDecoder)


def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
    from math import cos

    image = srcimage.copy()
    fontsize = 32
    if textfont is None:
        try:
            textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
            textfont = opts.font or Roboto
        except Exception:
            textfont = Roboto

    factor = 1.5
    gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
    for y in range(image.size[1]):
        mag = 1-cos(y/image.size[1]*factor)
        mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
        gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
    image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))

    draw = ImageDraw.Draw(image)

    font = ImageFont.truetype(textfont, fontsize)
    padding = 10

    _, _, w, h = draw.textbbox((0, 0), title, font=font)
    fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
    font = ImageFont.truetype(textfont, fontsize)
    _, _, w, h = draw.textbbox((0, 0), title, font=font)
    draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))

    _, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
    fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
    _, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
    fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
    _, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
    fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)

    font = ImageFont.truetype(textfont, min(fontsize_left, fontsize_mid, fontsize_right))

    draw.text((padding, image.size[1]-padding),               footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
    draw.text((image.size[0]/2, image.size[1]-padding),       footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
    draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))

    return image


if __name__ == '__main__':

    testEmbed = Image.open('test_embedding.png')
    data = extract_image_data_embed(testEmbed)
    assert data is not None

    data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
    assert data is not None

    image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
    cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')

    test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}

    embedded_image = insert_image_data_embed(cap_image, test_embed)

    retrived_embed = extract_image_data_embed(embedded_image)

    assert str(retrived_embed) == str(test_embed)

    embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)

    assert embedded_image == embedded_image2

    g = lcg()
    shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()

    reference_random = [253, 242, 127,  44, 157,  27, 239, 133,  38,  79, 167,   4, 177,
                         95, 130,  79,  78,  14,  52, 215, 220, 194, 126,  28, 240, 179,
                        160, 153, 149,  50, 105,  14,  21, 218, 199,  18,  54, 198, 193,
                         38, 128,  19,  53, 195, 124,  75, 205,  12,   6, 145,   0,  28,
                         30, 148,   8,  45, 218, 171,  55, 249,  97, 166,  12,  35,   0,
                         41, 221, 122, 215, 170,  31, 113, 186,  97, 119,  31,  23, 185,
                         66, 140,  30,  41,  37,  63, 137, 109, 216,  55, 159, 145,  82,
                         204, 86,  73, 222,  44, 198, 118, 240,  97]

    assert shared_random == reference_random

    hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())

    assert 12731374 == hunna_kay_random_sum