File size: 6,802 Bytes
01f98b3
2c19098
712e3af
2c19098
26063e6
2c19098
76b564d
 
 
 
8131717
6ba7689
 
 
 
 
 
01f98b3
 
76b564d
 
 
 
 
 
8131717
6ba7689
 
 
 
 
 
 
01f98b3
76b564d
9458c70
76b564d
 
26063e6
 
2c19098
76b564d
 
01f98b3
 
712e3af
01f98b3
712e3af
01f98b3
712e3af
342c62c
76b564d
 
 
 
 
 
712e3af
76b564d
 
 
 
01f98b3
 
 
 
 
 
 
4cb8223
2c19098
01f98b3
712e3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f98b3
712e3af
 
01f98b3
 
712e3af
 
 
01b89ba
 
712e3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b89ba
 
 
7bd0a5a
 
712e3af
 
 
7bd0a5a
712e3af
01b89ba
01f98b3
7bd0a5a
 
 
 
2c19098
088c386
2c19098
01f98b3
76b564d
6ba7689
01f98b3
d71d9d6
01f98b3
 
 
 
 
 
 
2c19098
088c386
2c19098
4cb8223
2c19098
01f98b3
 
2c19098
01b89ba
 
 
 
 
d71d9d6
40a8b65
 
01b89ba
40a8b65
 
 
 
 
 
 
2c19098
 
712e3af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from email import generator
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
import torch

models = [
  "nitrosocke/Arcane-Diffusion",
  "nitrosocke/archer-diffusion",
  "nitrosocke/elden-ring-diffusion",
  "nitrosocke/spider-verse-diffusion",
  "nitrosocke/modern-disney-diffusion",
  "hakurei/waifu-diffusion",
  "lambdalabs/sd-pokemon-diffusers",
  "yuk/fuyuko-waifu-diffusion",
  "AstraliteHeart/pony-diffusion",
  "IfanSnek/JohnDiffusion",
  "nousr/robo-diffusion",
  "DGSpitzer/Cyberpunk-Anime-Diffusion"
]

prompt_prefixes = {
  models[0]: "arcane style ",
  models[1]: "archer style ",
  models[2]: "elden ring style ",
  models[3]: "spiderverse style ",
  models[4]: "modern disney style ",
  models[5]: "",
  models[6]: "",
  models[7]: "",
  models[8]: "",
  models[9]: "",
  models[10]: "",
  models[11]: "dgs illustration style ",
}

current_model = models[0]
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
  pipe = pipe.to("cuda")

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def inference(model, prompt, img, strength, guidance, steps, seed):
  generator = torch.manual_seed(seed) if seed != 0 else None
  if img is not None:
    return img_inference(model, prompt, img, strength, guidance, steps, generator)
  else:
    return text_inference(model, prompt, guidance, steps, generator)

def text_inference(model, prompt, guidance, steps, generator=None):

    global current_model
    global pipe
    if model != current_model:
        current_model = model
        pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
        
        if torch.cuda.is_available():
            pipe = pipe.to("cuda")

    prompt = prompt_prefixes[current_model] + prompt
    image = pipe(
      prompt,
      num_inference_steps=int(steps),
      guidance_scale=guidance,
      width=512,
      height=512,
      generator=generator).images[0]
    return image

def img_inference(model, prompt, img, strength, guidance, steps, generator):

    global current_model
    global pipe
    if model != current_model:
        current_model = model
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
        
        if torch.cuda.is_available():
            pipe = pipe.to("cuda")

    prompt = prompt_prefixes[current_model] + prompt
    img.resize((512, 512))
    image = pipe(
        prompt,
        init_image=img,
        num_inference_steps=int(steps),
        strength=strength,
        guidance_scale=guidance,
        width=512,
        height=512,
        generator=generator).images[0]
    return image


css = """
  <style>
  .finetuned-diffusion-div {
      text-align: center;
      max-width: 700px;
      margin: 0 auto;
    }
    .finetuned-diffusion-div div {
      display: inline-flex;
      align-items: center;
      gap: 0.8rem;
      font-size: 1.75rem;
    }
    .finetuned-diffusion-div div h1 {
      font-weight: 900;
      margin-bottom: 7px;
    }
    .finetuned-diffusion-div p {
      margin-bottom: 10px;
      font-size: 94%;
    }
    .finetuned-diffusion-div p a {
      text-decoration: underline;
    }
  </style>
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Finetuned Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/IfanSnek/JohnDiffusion">John</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
              </p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column():

            model = gr.Dropdown(label="Model", choices=models, value=models[0])
            prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
            with gr.Accordion("Image to image (optional)", open=False):
              image = gr.Image(label="Image", height=256, tool="editor", type="pil")
              strength = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=0.75)
            
            with gr.Accordion("Advanced options", open=False):
              guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
              steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

            run = gr.Button(value="Run")
            gr.Markdown(f"Running on: {device}")
        with gr.Column():
            image_out = gr.Image(height=512)

    prompt.submit(inference, inputs=[model, image, strength, prompt, guidance, steps, seed], outputs=image_out)
    run.click(inference, inputs=[model, image, strength, prompt, guidance, steps, seed], outputs=image_out)
    gr.Examples([
        [models[0], "jason bateman disassembling the demon core", 7.5, 50],
        [models[3], "portrait of dwayne johnson", 7.0, 75],
        [models[4], "portrait of a beautiful alyx vance half life", 10, 50],
        [models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
        [models[4], "fantasy portrait painting, digital art", 4, 30],
    ], [model, prompt, guidance, steps], image_out, text_inference, cache_examples=False)#torch.cuda.is_available())
    gr.HTML('''
        <div>
            <p>Model by <a href="https://huggingface.co/nitrosocke" target="_blank">@nitrosocke</a> ❤️</p>
        </div>
        <div>Space by 
            <a href="https://twitter.com/hahahahohohe">
              <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social">
            </a>
        </div>
        ''')

demo.queue()
demo.launch(debug=True)