File size: 12,736 Bytes
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model

class Block(nn.Module):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """
    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), 
                                    requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x

class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., 
                 layer_scale_init_value=1e-6, head_init_scale=1.,
                 **kwargs,):
        super().__init__()

        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j], 
                layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        #self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
        #self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        #self.head.weight.data.mul_(head_init_scale)
        #self.head.bias.data.mul_(head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward_features(self, x):
        features = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            features.append(x)
        return features # global average pooling, (N, C, H, W) -> (N, C)

    def forward(self, x):
        #x = self.forward_features(x)
        #x = self.head(x)
        features = self.forward_features(x)
        return features

class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


model_urls = {
    "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
    "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
    "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
    "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
    "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
    "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
    "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
    "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
    "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
}

def convnext_tiny(pretrained=True,in_22k=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    if pretrained:
        checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
        #url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k']
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model_dict = model.state_dict()
        pretrained_dict = {}
        unmatched_pretrained_dict = {}
        for k, v in checkpoint['model'].items():
            if k in model_dict:
                pretrained_dict[k] = v
            else:
                unmatched_pretrained_dict[k] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        print(
            'Successfully loaded pretrained %d params, and %d paras are unmatched.'
            %(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
        print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
    return model

def convnext_small(pretrained=True,in_22k=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    if pretrained:
        checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
        #url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k']
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model_dict = model.state_dict()
        pretrained_dict = {}
        unmatched_pretrained_dict = {}
        for k, v in checkpoint['model'].items():
            if k in model_dict:
                pretrained_dict[k] = v
            else:
                unmatched_pretrained_dict[k] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        print(
            'Successfully loaded pretrained %d params, and %d paras are unmatched.'
            %(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
        print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
    return model

def convnext_base(pretrained=True, in_22k=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    if pretrained:
        checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
        #url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k']
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model_dict = model.state_dict()
        pretrained_dict = {}
        unmatched_pretrained_dict = {}
        for k, v in checkpoint['model'].items():
            if k in model_dict:
                pretrained_dict[k] = v
            else:
                unmatched_pretrained_dict[k] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        print(
            'Successfully loaded pretrained %d params, and %d paras are unmatched.'
            %(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
        print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
    return model

def convnext_large(pretrained=True, in_22k=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    if pretrained:
        checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
        #url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k']
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model_dict = model.state_dict()
        pretrained_dict = {}
        unmatched_pretrained_dict = {}
        for k, v in checkpoint['model'].items():
            if k in model_dict:
                pretrained_dict[k] = v
            else:
                unmatched_pretrained_dict[k] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        print(
            'Successfully loaded pretrained %d params, and %d paras are unmatched.'
            %(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
        print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
    return model

def convnext_xlarge(pretrained=True, in_22k=False, **kwargs):
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    if pretrained:
        assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
        checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
        #url = model_urls['convnext_xlarge_22k']
        #checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model_dict = model.state_dict()
        pretrained_dict = {}
        unmatched_pretrained_dict = {}
        for k, v in checkpoint['model'].items():
            if k in model_dict:
                pretrained_dict[k] = v
            else:
                unmatched_pretrained_dict[k] = v
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
        print(
            'Successfully loaded pretrained %d params, and %d paras are unmatched.'
            %(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
        print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
    return model

if __name__ == '__main__':
    import torch
    model = convnext_base(True, in_22k=False).cuda()

    rgb = torch.rand((2, 3, 256, 256)).cuda()
    out = model(rgb)
    print(len(out))
    for i, ft in enumerate(out):
        print(i, ft.shape)