Spaces:
Paused
Paused
File size: 11,123 Bytes
8a32844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import importlib
import torch
import torch.distributed as dist
from .avg_meter import AverageMeter
from collections import defaultdict, OrderedDict
import os
import socket
from mmcv.utils import collect_env as collect_base_env
try:
from mmcv.utils import get_git_hash
except:
from mmengine.utils import get_git_hash
#import mono.mmseg as mmseg
# import mmseg
import time
import datetime
import logging
def main_process() -> bool:
return get_rank() == 0
#return not cfg.distributed or \
# (cfg.distributed and cfg.local_rank == 0)
def get_world_size() -> int:
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank() -> int:
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def _find_free_port():
# refer to https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py # noqa: E501
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(('', 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def _is_free_port(port):
ips = socket.gethostbyname_ex(socket.gethostname())[-1]
ips.append('localhost')
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return all(s.connect_ex((ip, port)) != 0 for ip in ips)
# def collect_env():
# """Collect the information of the running environments."""
# env_info = collect_base_env()
# env_info['MMSegmentation'] = f'{mmseg.__version__}+{get_git_hash()[:7]}'
# return env_info
def init_env(launcher, cfg):
"""Initialize distributed training environment.
If argument ``cfg.dist_params.dist_url`` is specified as 'env://', then the master port will be system
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
environment variable, then a default port ``29500`` will be used.
"""
if launcher == 'slurm':
_init_dist_slurm(cfg)
elif launcher == 'ror':
_init_dist_ror(cfg)
elif launcher == 'None':
_init_none_dist(cfg)
else:
raise RuntimeError(f'{cfg.launcher} has not been supported!')
def _init_none_dist(cfg):
cfg.dist_params.num_gpus_per_node = 1
cfg.dist_params.world_size = 1
cfg.dist_params.nnodes = 1
cfg.dist_params.node_rank = 0
cfg.dist_params.global_rank = 0
cfg.dist_params.local_rank = 0
os.environ["WORLD_SIZE"] = str(1)
def _init_dist_ror(cfg):
from ac2.ror.comm import get_local_rank, get_world_rank, get_local_size, get_node_rank, get_world_size
cfg.dist_params.num_gpus_per_node = get_local_size()
cfg.dist_params.world_size = get_world_size()
cfg.dist_params.nnodes = (get_world_size()) // (get_local_size())
cfg.dist_params.node_rank = get_node_rank()
cfg.dist_params.global_rank = get_world_rank()
cfg.dist_params.local_rank = get_local_rank()
os.environ["WORLD_SIZE"] = str(get_world_size())
def _init_dist_slurm(cfg):
if 'NNODES' not in os.environ:
os.environ['NNODES'] = str(cfg.dist_params.nnodes)
if 'NODE_RANK' not in os.environ:
os.environ['NODE_RANK'] = str(cfg.dist_params.node_rank)
#cfg.dist_params.
num_gpus = torch.cuda.device_count()
world_size = int(os.environ['NNODES']) * num_gpus
os.environ['WORLD_SIZE'] = str(world_size)
# config port
if 'MASTER_PORT' in os.environ:
master_port = str(os.environ['MASTER_PORT']) # use MASTER_PORT in the environment variable
else:
# if torch.distributed default port(29500) is available
# then use it, else find a free port
if _is_free_port(16500):
master_port = '16500'
else:
master_port = str(_find_free_port())
os.environ['MASTER_PORT'] = master_port
# config addr
if 'MASTER_ADDR' in os.environ:
master_addr = str(os.environ['MASTER_PORT']) # use MASTER_PORT in the environment variable
# elif cfg.dist_params.dist_url is not None:
# master_addr = ':'.join(str(cfg.dist_params.dist_url).split(':')[:2])
else:
master_addr = '127.0.0.1' #'tcp://127.0.0.1'
os.environ['MASTER_ADDR'] = master_addr
# set dist_url to 'env://'
cfg.dist_params.dist_url = 'env://' #f"{master_addr}:{master_port}"
cfg.dist_params.num_gpus_per_node = num_gpus
cfg.dist_params.world_size = world_size
cfg.dist_params.nnodes = int(os.environ['NNODES'])
cfg.dist_params.node_rank = int(os.environ['NODE_RANK'])
# if int(os.environ['NNODES']) > 1 and cfg.dist_params.dist_url.startswith("file://"):
# raise Warning("file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://")
def get_func(func_name):
"""
Helper to return a function object by name. func_name must identify
a function in this module or the path to a function relative to the base
module.
@ func_name: function name.
"""
if func_name == '':
return None
try:
parts = func_name.split('.')
# Refers to a function in this module
if len(parts) == 1:
return globals()[parts[0]]
# Otherwise, assume we're referencing a module under modeling
module_name = '.'.join(parts[:-1])
module = importlib.import_module(module_name)
return getattr(module, parts[-1])
except:
raise RuntimeError(f'Failed to find function: {func_name}')
class Timer(object):
"""A simple timer."""
def __init__(self):
self.reset()
def tic(self):
# using time.time instead of time.clock because time time.clock
# does not normalize for multithreading
self.start_time = time.time()
def toc(self, average=True):
self.diff = time.time() - self.start_time
self.total_time += self.diff
self.calls += 1
self.average_time = self.total_time / self.calls
if average:
return self.average_time
else:
return self.diff
def reset(self):
self.total_time = 0.
self.calls = 0
self.start_time = 0.
self.diff = 0.
self.average_time = 0.
class TrainingStats(object):
"""Track vital training statistics."""
def __init__(self, log_period, tensorboard_logger=None):
self.log_period = log_period
self.tblogger = tensorboard_logger
self.tb_ignored_keys = ['iter', 'eta', 'epoch', 'time']
self.iter_timer = Timer()
# Window size for smoothing tracked values (with median filtering)
self.filter_size = log_period
def create_smoothed_value():
return AverageMeter()
self.smoothed_losses = defaultdict(create_smoothed_value)
#self.smoothed_metrics = defaultdict(create_smoothed_value)
#self.smoothed_total_loss = AverageMeter()
def IterTic(self):
self.iter_timer.tic()
def IterToc(self):
return self.iter_timer.toc(average=False)
def reset_iter_time(self):
self.iter_timer.reset()
def update_iter_stats(self, losses_dict):
"""Update tracked iteration statistics."""
for k, v in losses_dict.items():
self.smoothed_losses[k].update(float(v), 1)
def log_iter_stats(self, cur_iter, optimizer, max_iters, val_err={}):
"""Log the tracked statistics."""
if (cur_iter % self.log_period == 0):
stats = self.get_stats(cur_iter, optimizer, max_iters, val_err)
log_stats(stats)
if self.tblogger:
self.tb_log_stats(stats, cur_iter)
for k, v in self.smoothed_losses.items():
v.reset()
def tb_log_stats(self, stats, cur_iter):
"""Log the tracked statistics to tensorboard"""
for k in stats:
# ignore some logs
if k not in self.tb_ignored_keys:
v = stats[k]
if isinstance(v, dict):
self.tb_log_stats(v, cur_iter)
else:
self.tblogger.add_scalar(k, v, cur_iter)
def get_stats(self, cur_iter, optimizer, max_iters, val_err = {}):
eta_seconds = self.iter_timer.average_time * (max_iters - cur_iter)
eta = str(datetime.timedelta(seconds=int(eta_seconds)))
stats = OrderedDict(
iter=cur_iter, # 1-indexed
time=self.iter_timer.average_time,
eta=eta,
)
optimizer_state_dict = optimizer.state_dict()
lr = {}
for i in range(len(optimizer_state_dict['param_groups'])):
lr_name = 'group%d_lr' % i
lr[lr_name] = optimizer_state_dict['param_groups'][i]['lr']
stats['lr'] = OrderedDict(lr)
for k, v in self.smoothed_losses.items():
stats[k] = v.avg
stats['val_err'] = OrderedDict(val_err)
stats['max_iters'] = max_iters
return stats
def reduce_dict(input_dict, average=True):
"""
Reduce the values in the dictionary from all processes so that process with rank
0 has the reduced results.
Args:
@input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
@average (bool): whether to do average or sum
Returns:
a dict with the same keys as input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.reduce(values, dst=0)
if dist.get_rank() == 0 and average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
def log_stats(stats):
logger = logging.getLogger()
"""Log training statistics to terminal"""
lines = "[Step %d/%d]\n" % (
stats['iter'], stats['max_iters'])
lines += "\t\tloss: %.3f, time: %.6f, eta: %s\n" % (
stats['total_loss'], stats['time'], stats['eta'])
# log loss
lines += "\t\t"
for k, v in stats.items():
if 'loss' in k.lower() and 'total_loss' not in k.lower():
lines += "%s: %.3f" % (k, v) + ", "
lines = lines[:-3]
lines += '\n'
# validate criteria
lines += "\t\tlast val err:" + ", ".join("%s: %.6f" % (k, v) for k, v in stats['val_err'].items()) + ", "
lines += '\n'
# lr in different groups
lines += "\t\t" + ", ".join("%s: %.8f" % (k, v) for k, v in stats['lr'].items())
lines += '\n'
logger.info(lines[:-1]) # remove last new linen_pxl
|