Spaces:
Runtime error
Runtime error
File size: 9,081 Bytes
61c2d32 80ccb59 61c2d32 8df522a 61c2d32 8df522a 61c2d32 8df522a 61c2d32 80ccb59 558aa40 80ccb59 8df522a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
import cv2
from PIL import Image, ImageDraw
import torch
label_map = {
"background": 0,
"hat": 1,
"hair": 2,
"sunglasses": 3,
"upper_clothes": 4,
"skirt": 5,
"pants": 6,
"dress": 7,
"belt": 8,
"left_shoe": 9,
"right_shoe": 10,
"head": 11,
"left_leg": 12,
"right_leg": 13,
"left_arm": 14,
"right_arm": 15,
"bag": 16,
"scarf": 17,
}
def extend_arm_mask(wrist, elbow, scale):
wrist = elbow + scale * (wrist - elbow)
return wrist
def hole_fill(img):
img = np.pad(img[1:-1, 1:-1], pad_width=1, mode='constant', constant_values=0)
img_copy = img.copy()
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
cv2.floodFill(img, mask, (0, 0), 255)
img_inverse = cv2.bitwise_not(img)
dst = cv2.bitwise_or(img_copy, img_inverse)
return dst
def refine_mask(mask):
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
area = []
for j in range(len(contours)):
a_d = cv2.contourArea(contours[j], True)
area.append(abs(a_d))
refine_mask = np.zeros_like(mask).astype(np.uint8)
if len(area) != 0:
i = area.index(max(area))
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
return refine_mask
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384, height=512, radius=5):
im_parse = model_parse.resize((width, height), Image.NEAREST)
parse_array = np.array(im_parse)
if model_type == 'hd':
arm_width = 60
elif model_type == 'dc':
arm_width = 45
else:
raise ValueError("model_type must be \'hd\' or \'dc\'!")
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 3).astype(np.float32) + \
(parse_array == 11).astype(np.float32)
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
(parse_array == label_map["hat"]).astype(np.float32) + \
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
(parse_array == label_map["bag"]).astype(np.float32)
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
arms_left = (parse_array == 14).astype(np.float32)
arms_right = (parse_array == 15).astype(np.float32)
arms = arms_left + arms_right
if category == 'dresses':
parse_mask = (parse_array == 7).astype(np.float32) + \
(parse_array == 4).astype(np.float32) + \
(parse_array == 5).astype(np.float32) + \
(parse_array == 6).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'upper_body':
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
(parse_array == label_map["pants"]).astype(np.float32)
parser_mask_fixed += parser_mask_fixed_lower_cloth
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'lower_body':
parse_mask = (parse_array == 6).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32) + \
(parse_array == 5).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
(parse_array == 14).astype(np.float32) + \
(parse_array == 15).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
else:
raise NotImplementedError
# Load pose points
pose_data = keypoint["pose_keypoints_2d"]
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 2))
im_arms_left = Image.new('L', (width, height))
im_arms_right = Image.new('L', (width, height))
arms_draw_left = ImageDraw.Draw(im_arms_left)
arms_draw_right = ImageDraw.Draw(im_arms_right)
if category == 'dresses' or category == 'upper_body':
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
ARM_LINE_WIDTH = int(arm_width / 512 * height)
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
shoulder_right[1] + ARM_LINE_WIDTH // 2]
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
im_arms_right = arms_right
else:
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)
if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
im_arms_left = arms_left
else:
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
parser_mask_fixed += hands_left + hands_right
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
parse_mask = cv2.dilate(parse_mask, np.ones((radius, radius), np.uint16), iterations=5)
if category == 'dresses' or category == 'upper_body':
neck_mask = (parse_array == 18).astype(np.float32)
neck_mask = cv2.dilate(neck_mask, np.ones((radius, radius), np.uint16), iterations=1)
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
parse_mask = np.logical_or(parse_mask, neck_mask)
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
parse_mask += np.logical_or(parse_mask, arm_mask)
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
inpaint_mask = 1 - parse_mask_total
img = np.where(inpaint_mask, 255, 0)
dst = hole_fill(img.astype(np.uint8))
dst = refine_mask(dst)
inpaint_mask = dst / 255 * 1
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
return mask, mask_gray
def get_tensor(img, h, w, is_mask=False):
img = np.array(img.resize((w, h))).astype(np.float32)
if not is_mask:
img = (img / 127.5) - 1.0
else:
img = (img < 128).astype(np.float32)[:,:,None]
return torch.from_numpy(img)[None].cuda()
def get_batch(image, cloth, densepose, agn_img, agn_mask, img_h, img_w):
batch = dict()
batch["image"] = get_tensor(image, img_h, img_w)
batch["cloth"] = get_tensor(cloth, img_h, img_w)
batch["image_densepose"] = get_tensor(densepose, img_h, img_w)
batch["agn"] = get_tensor(agn_img, img_h, img_w)
batch["agn_mask"] = get_tensor(agn_mask, img_h, img_w, is_mask=True)
batch["txt"] = ""
return batch
def tensor2img(x):
'''
x : [BS x c x H x W] or [c x H x W]
'''
if x.ndim == 3:
x = x.unsqueeze(0)
BS, C, H, W = x.shape
x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy()
x = np.clip(x, -1, 1)
x = (x+1)/2
x = np.uint8(x*255.0)
if x.shape[-1] == 1:
x = np.concatenate([x,x,x], axis=-1)
return x
def center_crop(image):
width, height = image.size
new_height = height
new_width = height*3/4
left = (width - new_width)/2
top = (height - new_height)/2
right = (width + new_width)/2
bottom = (height + new_height)/2
image = image.crop((left, top, right, bottom))
return image |