Spaces:
Sleeping
Sleeping
File size: 30,140 Bytes
f2874d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
import torch
import torch.nn as nn
import numpy as np
import random
import enum
import traceback
import os
import sys
import json
F_DIR = os.path.dirname(os.path.realpath(__file__))
class XlitError(enum.Enum):
lang_err = "Unsupported langauge ID requested ;( Please check available languages."
string_err = "String passed is incompatable ;("
internal_err = "Internal crash ;("
unknown_err = "Unknown Failure"
loading_err = "Loading failed ;( Check if metadata/paths are correctly configured."
class Encoder(nn.Module):
"""
Simple RNN based encoder network
"""
def __init__(
self,
input_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
bidirectional=False,
dropout=0,
device="cpu",
):
super(Encoder, self).__init__()
self.input_dim = input_dim # src_vocab_sz
self.enc_embed_dim = embed_dim
self.enc_hidden_dim = hidden_dim
self.enc_rnn_type = rnn_type
self.enc_layers = layers
self.enc_directions = 2 if bidirectional else 1
self.device = device
self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)
if self.enc_rnn_type == "gru":
self.enc_rnn = nn.GRU(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
elif self.enc_rnn_type == "lstm":
self.enc_rnn = nn.LSTM(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
else:
raise Exception("unknown RNN type mentioned")
def forward(self, x, x_sz, hidden=None):
"""
x_sz: (batch_size, 1) - Unpadded sequence lengths used for pack_pad
Return:
output: (batch_size, max_length, hidden_dim)
hidden: (n_layer*num_directions, batch_size, hidden_dim) | if LSTM tuple -(h_n, c_n)
"""
batch_sz = x.shape[0]
# x: batch_size, max_length, enc_embed_dim
x = self.embedding(x)
## pack the padded data
# x: max_length, batch_size, enc_embed_dim -> for pack_pad
x = x.permute(1, 0, 2)
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
# output: packed_size, batch_size, enc_embed_dim --> hidden from all timesteps
# hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
output, hidden = self.enc_rnn(x)
## pad the sequence to the max length in the batch
# output: max_length, batch_size, enc_emb_dim*directions)
output, _ = nn.utils.rnn.pad_packed_sequence(output)
# output: batch_size, max_length, hidden_dim
output = output.permute(1, 0, 2)
return output, hidden
class Decoder(nn.Module):
"""
Used as decoder stage
"""
def __init__(
self,
output_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
use_attention=True,
enc_outstate_dim=None, # enc_directions * enc_hidden_dim
dropout=0,
device="cpu",
):
super(Decoder, self).__init__()
self.output_dim = output_dim # tgt_vocab_sz
self.dec_hidden_dim = hidden_dim
self.dec_embed_dim = embed_dim
self.dec_rnn_type = rnn_type
self.dec_layers = layers
self.use_attention = use_attention
self.device = device
if self.use_attention:
self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
else:
self.enc_outstate_dim = 0
self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)
if self.dec_rnn_type == "gru":
self.dec_rnn = nn.GRU(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
elif self.dec_rnn_type == "lstm":
self.dec_rnn = nn.LSTM(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
else:
raise Exception("unknown RNN type mentioned")
self.fc = nn.Sequential(
nn.Linear(self.dec_hidden_dim, self.dec_embed_dim),
nn.LeakyReLU(),
# nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
nn.Linear(self.dec_embed_dim, self.output_dim),
)
##----- Attention ----------
if self.use_attention:
self.W1 = nn.Linear(self.enc_outstate_dim, self.dec_hidden_dim)
self.W2 = nn.Linear(self.dec_hidden_dim, self.dec_hidden_dim)
self.V = nn.Linear(self.dec_hidden_dim, 1)
def attention(self, x, hidden, enc_output):
"""
x: (batch_size, 1, dec_embed_dim) -> after Embedding
enc_output: batch_size, max_length, enc_hidden_dim *num_directions
hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
"""
## perform addition to calculate the score
# hidden_with_time_axis: batch_size, 1, hidden_dim
## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
hidden_with_time_axis = torch.sum(hidden, axis=0)
hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)
# score: batch_size, max_length, hidden_dim
score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))
# attention_weights: batch_size, max_length, 1
# we get 1 at the last axis because we are applying score to self.V
attention_weights = torch.softmax(self.V(score), dim=1)
# context_vector shape after sum == (batch_size, hidden_dim)
context_vector = attention_weights * enc_output
context_vector = torch.sum(context_vector, dim=1)
# context_vector: batch_size, 1, hidden_dim
context_vector = context_vector.unsqueeze(1)
# attend_out (batch_size, 1, dec_embed_dim + hidden_size)
attend_out = torch.cat((context_vector, x), -1)
return attend_out, attention_weights
def forward(self, x, hidden, enc_output):
"""
x: (batch_size, 1)
enc_output: batch_size, max_length, dec_embed_dim
hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)
"""
if (hidden is None) and (self.use_attention is False):
raise Exception("No use of a decoder with No attention and No Hidden")
batch_sz = x.shape[0]
if hidden is None:
# hidden: n_layers, batch_size, hidden_dim
hid_for_att = torch.zeros(
(self.dec_layers, batch_sz, self.dec_hidden_dim)
).to(self.device)
elif self.dec_rnn_type == "lstm":
hid_for_att = hidden[0] # h_n
else:
hid_for_att = hidden
# x (batch_size, 1, dec_embed_dim) -> after embedding
x = self.embedding(x)
if self.use_attention:
# x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
# aw: (batch_size, max_length, 1)
x, aw = self.attention(x, hid_for_att, enc_output)
else:
x, aw = x, 0
# passing the concatenated vector to the GRU
# output: (batch_size, n_layers, hidden_size)
# hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
output, hidden = (
self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)
)
# output :shp: (batch_size * 1, hidden_size)
output = output.view(-1, output.size(2))
# output :shp: (batch_size * 1, output_dim)
output = self.fc(output)
return output, hidden, aw
class Seq2Seq(nn.Module):
"""
Used to construct seq2seq architecture with encoder decoder objects
"""
def __init__(
self, encoder, decoder, pass_enc2dec_hid=False, dropout=0, device="cpu"
):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
self.pass_enc2dec_hid = pass_enc2dec_hid
if self.pass_enc2dec_hid:
assert (
decoder.dec_hidden_dim == encoder.enc_hidden_dim
), "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
if decoder.use_attention:
assert (
decoder.enc_outstate_dim
== encoder.enc_directions * encoder.enc_hidden_dim
), "Set `enc_out_dim` correctly in decoder"
assert (
self.pass_enc2dec_hid or decoder.use_attention
), "No use of a decoder with No attention and No Hidden from Encoder"
def forward(self, src, tgt, src_sz, teacher_forcing_ratio=0):
"""
src: (batch_size, sequence_len.padded)
tgt: (batch_size, sequence_len.padded)
src_sz: [batch_size, 1] - Unpadded sequence lengths
"""
batch_size = tgt.shape[0]
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# pred_vecs: (batch_size, output_dim, sequence_sz) -> shape required for CELoss
pred_vecs = torch.zeros(batch_size, self.decoder.output_dim, tgt.size(1)).to(
self.device
)
# dec_input: (batch_size, 1)
dec_input = tgt[:, 0].unsqueeze(1) # initialize to start token
pred_vecs[:, 1, 0] = 1 # Initialize to start tokens all batches
for t in range(1, tgt.size(1)):
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
# dec_output: batch_size, output_dim
# dec_input: (batch_size, 1)
dec_output, dec_hidden, _ = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
pred_vecs[:, :, t] = dec_output
# # prediction: batch_size
prediction = torch.argmax(dec_output, dim=1)
# Teacher Forcing
if random.random() < teacher_forcing_ratio:
dec_input = tgt[:, t].unsqueeze(1)
else:
dec_input = prediction.unsqueeze(1)
return pred_vecs # (batch_size, output_dim, sequence_sz)
def inference(self, src, max_tgt_sz=50, debug=0):
"""
single input only, No batch Inferencing
src: (sequence_len)
debug: if True will return attention weights also
"""
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# pred_arr: (sequence_sz, 1) -> shape required for CELoss
pred_arr = torch.zeros(max_tgt_sz, 1).to(self.device)
if debug:
attend_weight_arr = torch.zeros(max_tgt_sz, len(src)).to(self.device)
# dec_input: (batch_size, 1)
dec_input = start_tok.view(1, 1) # initialize to start token
pred_arr[0] = start_tok.view(1, 1) # initialize to start token
for t in range(max_tgt_sz):
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
# dec_output: batch_size, output_dim
# dec_input: (batch_size, 1)
dec_output, dec_hidden, aw = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
# prediction :shp: (1,1)
prediction = torch.argmax(dec_output, dim=1)
dec_input = prediction.unsqueeze(1)
pred_arr[t] = prediction
if debug:
attend_weight_arr[t] = aw.squeeze(-1)
if torch.eq(prediction, end_tok):
break
if debug:
return pred_arr.squeeze(), attend_weight_arr
# pred_arr :shp: (sequence_len)
return pred_arr.squeeze().to(dtype=torch.long)
def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
"""Active beam Search based decoding
src: (sequence_len)
"""
def _avg_score(p_tup):
"""Used for Sorting
TODO: Dividing by length of sequence power alpha as hyperparam
"""
return p_tup[0]
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
init_dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
init_dec_hidden = None
# top_pred[][0] = Σ-log_softmax
# top_pred[][1] = sequence torch.tensor shape: (1)
# top_pred[][2] = dec_hidden
top_pred_list = [(0, start_tok.unsqueeze(0), init_dec_hidden)]
for t in range(max_tgt_sz):
cur_pred_list = []
for p_tup in top_pred_list:
if p_tup[1][-1] == end_tok:
cur_pred_list.append(p_tup)
continue
# dec_hidden: dec_layers, 1, hidden_dim
# dec_output: 1, output_dim
dec_output, dec_hidden, _ = self.decoder(
x=p_tup[1][-1].view(1, 1), # dec_input: (1,1)
hidden=p_tup[2],
enc_output=enc_output,
)
## π{prob} = Σ{log(prob)} -> to prevent diminishing
# dec_output: (1, output_dim)
dec_output = nn.functional.log_softmax(dec_output, dim=1)
# pred_topk.values & pred_topk.indices: (1, beam_width)
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
for i in range(beam_width):
sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
# seq_tensor_ : (seq_len)
seq_tensor_ = torch.cat((p_tup[1], pred_topk.indices[0][i].view(1)))
cur_pred_list.append((sig_logsmx_, seq_tensor_, dec_hidden))
cur_pred_list.sort(key=_avg_score, reverse=True) # Maximized order
top_pred_list = cur_pred_list[:beam_width]
# check if end_tok of all topk
end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
if beam_width == sum(end_flags_):
break
pred_tnsr_list = [t[1] for t in top_pred_list]
return pred_tnsr_list
def passive_beam_inference(self, src, beam_width=7, max_tgt_sz=50):
"""
Passive Beam search based inference
src: (sequence_len)
"""
def _avg_score(p_tup):
"""Used for Sorting
TODO: Dividing by length of sequence power alpha as hyperparam
"""
return p_tup[0]
def _beam_search_topk(topk_obj, start_tok, beam_width):
"""search for sequence with maxim prob
topk_obj[x]: .values & .indices shape:(1, beam_width)
"""
# top_pred_list[x]: tuple(prob, seq_tensor)
top_pred_list = [
(0, start_tok.unsqueeze(0)),
]
for obj in topk_obj:
new_lst_ = list()
for itm in top_pred_list:
for i in range(beam_width):
sig_logsmx_ = itm[0] + obj.values[0][i]
seq_tensor_ = torch.cat((itm[1], obj.indices[0][i].view(1)))
new_lst_.append((sig_logsmx_, seq_tensor_))
new_lst_.sort(key=_avg_score, reverse=True)
top_pred_list = new_lst_[:beam_width]
return top_pred_list
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# dec_input: (1, 1)
dec_input = start_tok.view(1, 1) # initialize to start token
topk_obj = []
for t in range(max_tgt_sz):
dec_output, dec_hidden, aw = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
## π{prob} = Σ{log(prob)} -> to prevent diminishing
# dec_output: (1, output_dim)
dec_output = nn.functional.log_softmax(dec_output, dim=1)
# pred_topk.values & pred_topk.indices: (1, beam_width)
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
topk_obj.append(pred_topk)
# dec_input: (1, 1)
dec_input = pred_topk.indices[0][0].view(1, 1)
if torch.eq(dec_input, end_tok):
break
top_pred_list = _beam_search_topk(topk_obj, start_tok, beam_width)
pred_tnsr_list = [t[1] for t in top_pred_list]
return pred_tnsr_list
class GlyphStrawboss:
def __init__(self, glyphs="en"):
"""list of letters in a language in unicode
lang: List with unicodes
"""
if glyphs == "en":
# Smallcase alone
self.glyphs = [chr(alpha) for alpha in range(97, 123)] + ["é", "è", "á"]
else:
self.dossier = json.load(open(glyphs, encoding="utf-8"))
self.numsym_map = self.dossier["numsym_map"]
self.glyphs = self.dossier["glyphs"]
self.indoarab_num = [chr(alpha) for alpha in range(48, 58)]
self.char2idx = {}
self.idx2char = {}
self._create_index()
def _create_index(self):
self.char2idx["_"] = 0 # pad
self.char2idx["$"] = 1 # start
self.char2idx["#"] = 2 # end
self.char2idx["*"] = 3 # Mask
self.char2idx["'"] = 4 # apostrophe U+0027
self.char2idx["%"] = 5 # unused
self.char2idx["!"] = 6 # unused
self.char2idx["?"] = 7
self.char2idx[":"] = 8
self.char2idx[" "] = 9
self.char2idx["-"] = 10
self.char2idx[","] = 11
self.char2idx["."] = 12
self.char2idx["("] = 13
self.char2idx[")"] = 14
self.char2idx["/"] = 15
self.char2idx["^"] = 16
for idx, char in enumerate(self.indoarab_num):
self.char2idx[char] = idx + 17
# letter to index mapping
for idx, char in enumerate(self.glyphs):
self.char2idx[char] = idx + 27 # +20 token initially
# index to letter mapping
for char, idx in self.char2idx.items():
self.idx2char[idx] = char
def size(self):
return len(self.char2idx)
def word2xlitvec(self, word):
"""Converts given string of gyphs(word) to vector(numpy)
Also adds tokens for start and end
"""
try:
vec = [self.char2idx["$"]] # start token
for i in list(word):
vec.append(self.char2idx[i])
vec.append(self.char2idx["#"]) # end token
vec = np.asarray(vec, dtype=np.int64)
return vec
except Exception as error:
print("Error In word:", word, "Error Char not in Token:", error)
sys.exit()
def xlitvec2word(self, vector):
"""Converts vector(numpy) to string of glyphs(word)"""
char_list = []
for i in vector:
char_list.append(self.idx2char[i])
word = "".join(char_list).replace("$", "").replace("#", "") # remove tokens
word = word.replace("_", "").replace("*", "") # remove tokens
return word
class XlitPiston:
"""
For handling prediction & post-processing of transliteration for a single language
Class dependency: Seq2Seq, GlyphStrawboss
Global Variables: F_DIR
"""
def __init__(
self, weight_path, tglyph_cfg_file, iglyph_cfg_file="en", device="cpu"
):
self.device = device
self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
self.tgt_glyph_obj = GlyphStrawboss(glyphs=tglyph_cfg_file)
self._numsym_set = set(
json.load(open(tglyph_cfg_file, encoding="utf-8"))["numsym_map"].keys()
)
self._inchar_set = set("abcdefghijklmnopqrstuvwxyzéèá")
self._natscr_set = set().union(
self.tgt_glyph_obj.glyphs, sum(self.tgt_glyph_obj.numsym_map.values(), [])
)
## Model Config Static TODO: add defining in json support
input_dim = self.in_glyph_obj.size()
output_dim = self.tgt_glyph_obj.size()
enc_emb_dim = 300
dec_emb_dim = 300
enc_hidden_dim = 512
dec_hidden_dim = 512
rnn_type = "lstm"
enc2dec_hid = True
attention = True
enc_layers = 1
dec_layers = 2
m_dropout = 0
enc_bidirect = True
enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)
enc = Encoder(
input_dim=input_dim,
embed_dim=enc_emb_dim,
hidden_dim=enc_hidden_dim,
rnn_type=rnn_type,
layers=enc_layers,
dropout=m_dropout,
device=self.device,
bidirectional=enc_bidirect,
)
dec = Decoder(
output_dim=output_dim,
embed_dim=dec_emb_dim,
hidden_dim=dec_hidden_dim,
rnn_type=rnn_type,
layers=dec_layers,
dropout=m_dropout,
use_attention=attention,
enc_outstate_dim=enc_outstate_dim,
device=self.device,
)
self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
self.model = self.model.to(self.device)
weights = torch.load(weight_path, map_location=torch.device(self.device))
self.model.load_state_dict(weights)
self.model.eval()
def character_model(self, word, beam_width=1):
in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
## change to active or passive beam
p_out_list = self.model.active_beam_inference(in_vec, beam_width=beam_width)
result = [
self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list
]
# List type
return result
def numsym_model(self, seg):
"""tgt_glyph_obj.numsym_map[x] returns a list object"""
if len(seg) == 1:
return [seg] + self.tgt_glyph_obj.numsym_map[seg]
a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
return [seg] + ["".join(a)]
def _word_segementer(self, sequence):
sequence = sequence.lower()
accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
# sequence = ''.join([i for i in sequence if i in accepted])
segment = []
idx = 0
seq_ = list(sequence)
while len(seq_):
# for Number-Symbol
temp = ""
while len(seq_) and seq_[0] in self._numsym_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Target Chars
temp = ""
while len(seq_) and seq_[0] in self._natscr_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Input-Roman Chars
temp = ""
while len(seq_) and seq_[0] in self._inchar_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
temp = ""
while len(seq_) and seq_[0] not in accepted:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
return segment
def inferencer(self, sequence, beam_width=10):
seg = self._word_segementer(sequence[:120])
lit_seg = []
p = 0
while p < len(seg):
if seg[p][0] in self._natscr_set:
lit_seg.append([seg[p]])
p += 1
elif seg[p][0] in self._inchar_set:
lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
p += 1
elif seg[p][0] in self._numsym_set: # num & punc
lit_seg.append(self.numsym_model(seg[p]))
p += 1
else:
lit_seg.append([seg[p]])
p += 1
## IF segment less/equal to 2 then return combinotorial,
## ELSE only return top1 of each result concatenated
if len(lit_seg) == 1:
final_result = lit_seg[0]
elif len(lit_seg) == 2:
final_result = [""]
for seg in lit_seg:
new_result = []
for s in seg:
for f in final_result:
new_result.append(f + s)
final_result = new_result
else:
new_result = []
for seg in lit_seg:
new_result.append(seg[0])
final_result = ["".join(new_result)]
return final_result
class XlitEngine:
"""
For Managing the top level tasks and applications of transliteration
Global Variables: F_DIR
"""
def __init__(self, lang2use="hi", config_path="models/default_lineup.json"):
lineup = json.load(open(os.path.join(F_DIR, config_path), encoding="utf-8"))
models_path = os.path.join(F_DIR, "models")
self.lang_config = {}
if lang2use in lineup:
self.lang_config[lang2use] = lineup[lang2use]
else:
raise Exception(
"XlitError: The entered Langauge code not found. Available are {}".format(
lineup.keys()
)
)
self.langs = {}
self.lang_model = {}
for la in self.lang_config:
try:
print("Loading {}...".format(la))
self.lang_model[la] = XlitPiston(
weight_path=os.path.join(
models_path, self.lang_config[la]["weight"]
),
tglyph_cfg_file=os.path.join(
models_path, self.lang_config[la]["script"]
),
iglyph_cfg_file="en",
)
self.langs[la] = self.lang_config[la]["name"]
except Exception as error:
print("XlitError: Failure in loading {} \n".format(la), error)
print(XlitError.loading_err.value)
def translit_word(self, eng_word, lang_code="hi", topk=7, beam_width=10):
if eng_word == "":
return []
if lang_code in self.langs:
try:
res_list = self.lang_model[lang_code].inferencer(
eng_word, beam_width=beam_width
)
return res_list[:topk]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
def translit_sentence(self, eng_sentence, lang_code="hi", beam_width=10):
if eng_sentence == "":
return []
if lang_code in self.langs:
try:
out_str = ""
for word in eng_sentence.split():
res_ = self.lang_model[lang_code].inferencer(
word, beam_width=beam_width
)
out_str = out_str + res_[0] + " "
return out_str[:-1]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
if __name__ == "__main__":
engine = XlitEngine()
y = engine.translit_sentence("Hello World !")
print(y)
|