Spaces:
Runtime error
Runtime error
File size: 6,046 Bytes
6926a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
'''
Downloads models from Hugging Face to models/model-name.
Example:
python download-model.py facebook/opt-1.3b
'''
import argparse
import base64
import json
import multiprocessing
import re
import sys
from pathlib import Path
import requests
import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
args = parser.parse_args()
def get_file(args):
url = args[0]
output_folder = args[1]
idx = args[2]
tot = args[3]
print(f"Downloading file {idx} of {tot}...")
r = requests.get(url, stream=True)
with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
def sanitize_branch_name(branch_name):
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if pattern.match(branch_name):
return branch_name
else:
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
def select_model_from_default_options():
models = {
"Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
"Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
"Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
"Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
"Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
"Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
"OPT 6.7b": ("facebook", "opt-6.7b", "main"),
"OPT 2.7b": ("facebook", "opt-2.7b", "main"),
"OPT 1.3b": ("facebook", "opt-1.3b", "main"),
"OPT 350m": ("facebook", "opt-350m", "main"),
}
choices = {}
print("Select the model that you want to download:\n")
for i,name in enumerate(models):
char = chr(ord('A')+i)
choices[char] = name
print(f"{char}) {name}")
char = chr(ord('A')+len(models))
print(f"{char}) None of the above")
print()
print("Input> ", end='')
choice = input()[0].strip().upper()
if choice == char:
print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
Examples:
PygmalionAI/pygmalion-6b
facebook/opt-1.3b
""")
print("Input> ", end='')
model = input()
branch = "main"
else:
arr = models[choices[choice]]
model = f"{arr[0]}/{arr[1]}"
branch = arr[2]
return model, branch
def get_download_links_from_huggingface(model, branch):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}?cursor="
cursor = b""
links = []
classifications = []
has_pytorch = False
has_safetensors = False
while True:
content = requests.get(f"{base}{page}{cursor.decode()}").content
dict = json.loads(content)
if len(dict) == 0:
break
for i in range(len(dict)):
fname = dict[i]['path']
is_pytorch = re.match("pytorch_model.*\.bin", fname)
is_safetensors = re.match("model.*\.safetensors", fname)
is_tokenizer = re.match("tokenizer.*\.model", fname)
is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_text, is_tokenizer)):
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not args.text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if has_pytorch and has_safetensors:
for i in range(len(classifications)-1, -1, -1):
if classifications[i] == 'pytorch':
links.pop(i)
return links
if __name__ == '__main__':
model = args.MODEL
branch = args.branch
if model is None:
model, branch = select_model_from_default_options()
else:
if model[-1] == '/':
model = model[:-1]
branch = args.branch
if branch is None:
branch = "main"
else:
try:
branch = sanitize_branch_name(branch)
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
if branch != 'main':
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
else:
output_folder = Path("models") / model.split('/')[-1]
if not output_folder.exists():
output_folder.mkdir()
links = get_download_links_from_huggingface(model, branch)
# Downloading the files
print(f"Downloading the model to {output_folder}")
pool = multiprocessing.Pool(processes=args.threads)
results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
pool.close()
pool.join()
|