File size: 5,469 Bytes
e2508c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import cv2
import plotly.graph_objects as go
from math import cos, sin
from scipy.spatial.transform import Rotation as R


def plot_3D_rotation(rotation_matrix):
    fig = go.Figure()

    # Original axis orientation
    axes_points = np.array([
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, 0]
    ], dtype=np.float64)

    # Plot original axes
    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 0]],
        y=[0, axes_points[1, 0]],
        z=[0, axes_points[2, 0]],
        mode='lines+text',
        line=dict(color='blue', width=6),
        name='Canonical X-axis',
        text=['', 'X axis'],
        textposition='middle center',
    ))

    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 1]],
        y=[0, axes_points[1, 1]],
        z=[0, axes_points[2, 1]],
        mode='lines+text',
        line=dict(color='blue', width=6),
        name='Canonical Z-axis',
        text=['', 'Z axis'],
        textposition='middle center',
    ))

    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 2]],
        y=[0, axes_points[1, 2]],
        z=[0, axes_points[2, 2]],
        mode='lines+text',
        line=dict(color='blue', width=6),
        name='Canonical Y-axis',
        text=['', 'Y axis'],
        textposition='middle center',
    ))

     # Apply rotation
    axes_points = rotation_matrix @ axes_points

    # Plot rotated axes
    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 0]],
        y=[0, axes_points[1, 0]],
        z=[0, axes_points[2, 0]],
        mode='lines+text',
        line=dict(color='red', width=6),
        name='Rotated X\'-axis',
        text=['', 'Rotated X axis'],
        textposition='middle center',
    ))

    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 1]],
        y=[0, axes_points[1, 1]],
        z=[0, axes_points[2, 1]],
        mode='lines+text',
        line=dict(color='red', width=6),
        name='Rotated Z\'-axis',
        text=['', 'Rotated Z axis'],
        textposition='middle center',
    ))

    fig.add_trace(go.Scatter3d(
        x=[0, axes_points[0, 2]],
        y=[0, axes_points[1, 2]],
        z=[0, axes_points[2, 2]],
        mode='lines+text',
        line=dict(color='red', width=6),
        name='Rotated Y\'-axis',
        text=['', 'Rotated Y axis'],
        textposition='middle center',
    ))

    # Retrieve pitch, yaw, roll from rotation matrix
    r = R.from_matrix(rotation_matrix)
    pitch, yaw, roll = r.as_euler('xzy', degrees=True)

    # Set layout
    fig.update_layout(
        scene=dict(
            xaxis=dict(title='X-axis', range=[-1.2, 1.2]),
            yaxis=dict(title='Z-axis', range=[-1.2, 1.2]),
            zaxis=dict(title='Y-axis', range=[-1.2, 1.2]),
            xaxis_tickvals=np.arange(-1.2, 1.2, 0.6),
            yaxis_tickvals=np.arange(-1.2, 1.2, 0.5),
            zaxis_tickvals=np.arange(-1.2, 1.2, 0.5),
            aspectmode='cube',
            aspectratio=dict(x=1, y=1, z=1),
        ),
        margin=dict(l=0, r=0, t=0, b=30),
    )
    # add annotation
    fig.add_annotation(dict(font=dict(color='black',size=15),
        x=-30,
        y=50,
        showarrow=False,
        text=f"Pitch: {int(pitch)} - Yaw: {int(yaw)} - Roll: {int(roll)}",
        textangle=0,
        xanchor='left',
        xref="paper",
        yref="paper"))
    return fig


def draw_2D_axes(img, roll, pitch, yaw, tdx=None, tdy=None, size=150.):
    # Input is a cv2 image
    # pose_params: (pitch, yaw, roll, tdx, tdy)
    # Where (tdx, tdy) is the translation of the face.
    # For pose we have [pitch yaw roll tdx tdy tdz scale_factor]

    p = pitch * np.pi / 180
    y = (yaw * np.pi / 180)
    r = -roll * np.pi / 180
    if tdx != None and tdy != None:
        face_x = tdx - 0.50 * size 
        face_y = tdy - 0.50 * size

    else:
        height, width = img.shape[:2]
        face_x = width / 2 - 0.5 * size
        face_y = height / 2 - 0.5 * size

    x1 = size * (cos(y) * cos(r)) + face_x
    y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y 
    x2 = size * (-cos(y) * sin(r)) + face_x
    y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y
    x3 = size * (sin(y)) + face_x
    y3 = size * (-cos(y) * sin(p)) + face_y

    # Draw base in red
    cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3)
    cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3)
    # Draw pillars in blue
    cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2)
    cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2)
    # Draw top in green
    cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
    cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2)

    return img