File size: 9,849 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from dataclasses import asdict, dataclass
from typing import List

from coqpit import Coqpit, check_argument
from trainer import TrainerConfig


@dataclass
class BaseAudioConfig(Coqpit):
    """Base config to definge audio processing parameters. It is used to initialize
    ```TTS.utils.audio.AudioProcessor.```

    Args:
        fft_size (int):
            Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024.

        win_length (int):
            Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match
            ```fft_size```. Defaults to 1024.

        hop_length (int):
            Number of audio samples between adjacent STFT columns. Defaults to 1024.

        frame_shift_ms (int):
            Set ```hop_length``` based on milliseconds and sampling rate.

        frame_length_ms (int):
            Set ```win_length``` based on milliseconds and sampling rate.

        stft_pad_mode (str):
            Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'.

        sample_rate (int):
            Audio sampling rate. Defaults to 22050.

        resample (bool):
            Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```.

        preemphasis (float):
            Preemphasis coefficient. Defaults to 0.0.

        ref_level_db (int): 20
            Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air.
            Defaults to 20.

        do_sound_norm (bool):
            Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False.

        log_func (str):
            Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'.

        do_trim_silence (bool):
            Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```.

        do_amp_to_db_linear (bool, optional):
            enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.

        do_amp_to_db_mel (bool, optional):
            enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.

        pitch_fmax (float, optional):
            Maximum frequency of the F0 frames. Defaults to ```640```.

        pitch_fmin (float, optional):
            Minimum frequency of the F0 frames. Defaults to ```1```.

        trim_db (int):
            Silence threshold used for silence trimming. Defaults to 45.

        do_rms_norm (bool, optional):
            enable/disable RMS volume normalization when loading an audio file. Defaults to False.

        db_level (int, optional):
            dB level used for rms normalization. The range is -99 to 0. Defaults to None.

        power (float):
            Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the
            artifacts in the synthesized voice. Defaults to 1.5.

        griffin_lim_iters (int):
            Number of Griffing Lim iterations. Defaults to 60.

        num_mels (int):
            Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80.

        mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices.
            It needs to be adjusted for a dataset. Defaults to 0.

        mel_fmax (float):
            Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset.

        spec_gain (int):
            Gain applied when converting amplitude to DB. Defaults to 20.

        signal_norm (bool):
            enable/disable signal normalization. Defaults to True.

        min_level_db (int):
            minimum db threshold for the computed melspectrograms. Defaults to -100.

        symmetric_norm (bool):
            enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else
            [0, k], Defaults to True.

        max_norm (float):
            ```k``` defining the normalization range. Defaults to 4.0.

        clip_norm (bool):
            enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.

        stats_path (str):
            Path to the computed stats file. Defaults to None.
    """

    # stft parameters
    fft_size: int = 1024
    win_length: int = 1024
    hop_length: int = 256
    frame_shift_ms: int = None
    frame_length_ms: int = None
    stft_pad_mode: str = "reflect"
    # audio processing parameters
    sample_rate: int = 22050
    resample: bool = False
    preemphasis: float = 0.0
    ref_level_db: int = 20
    do_sound_norm: bool = False
    log_func: str = "np.log10"
    # silence trimming
    do_trim_silence: bool = True
    trim_db: int = 45
    # rms volume normalization
    do_rms_norm: bool = False
    db_level: float = None
    # griffin-lim params
    power: float = 1.5
    griffin_lim_iters: int = 60
    # mel-spec params
    num_mels: int = 80
    mel_fmin: float = 0.0
    mel_fmax: float = None
    spec_gain: int = 20
    do_amp_to_db_linear: bool = True
    do_amp_to_db_mel: bool = True
    # f0 params
    pitch_fmax: float = 640.0
    pitch_fmin: float = 1.0
    # normalization params
    signal_norm: bool = True
    min_level_db: int = -100
    symmetric_norm: bool = True
    max_norm: float = 4.0
    clip_norm: bool = True
    stats_path: str = None

    def check_values(
        self,
    ):
        """Check config fields"""
        c = asdict(self)
        check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056)
        check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058)
        check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000)
        check_argument(
            "frame_length_ms",
            c,
            restricted=True,
            min_val=10,
            max_val=1000,
            alternative="win_length",
        )
        check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length")
        check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1)
        check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10)
        check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000)
        check_argument("power", c, restricted=True, min_val=1, max_val=5)
        check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000)

        # normalization parameters
        check_argument("signal_norm", c, restricted=True)
        check_argument("symmetric_norm", c, restricted=True)
        check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000)
        check_argument("clip_norm", c, restricted=True)
        check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000)
        check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True)
        check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100)
        check_argument("do_trim_silence", c, restricted=True)
        check_argument("trim_db", c, restricted=True)


@dataclass
class BaseDatasetConfig(Coqpit):
    """Base config for TTS datasets.

    Args:
        formatter (str):
            Formatter name that defines used formatter in ```TTS.tts.datasets.formatter```. Defaults to `""`.

        dataset_name (str):
            Unique name for the dataset. Defaults to `""`.

        path (str):
            Root path to the dataset files. Defaults to `""`.

        meta_file_train (str):
            Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets.
            Defaults to `""`.

        ignored_speakers (List):
            List of speakers IDs that are not used at the training. Default None.

        language (str):
            Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to `""`.

        phonemizer (str):
            Phonemizer used for that dataset's language. By default it uses `DEF_LANG_TO_PHONEMIZER`. Defaults to `""`.

        meta_file_val (str):
            Name of the dataset meta file that defines the instances used at validation.

        meta_file_attn_mask (str):
            Path to the file that lists the attention mask files used with models that require attention masks to
            train the duration predictor.
    """

    formatter: str = ""
    dataset_name: str = ""
    path: str = ""
    meta_file_train: str = ""
    ignored_speakers: List[str] = None
    language: str = ""
    phonemizer: str = ""
    meta_file_val: str = ""
    meta_file_attn_mask: str = ""

    def check_values(
        self,
    ):
        """Check config fields"""
        c = asdict(self)
        check_argument("formatter", c, restricted=True)
        check_argument("path", c, restricted=True)
        check_argument("meta_file_train", c, restricted=True)
        check_argument("meta_file_val", c, restricted=False)
        check_argument("meta_file_attn_mask", c, restricted=False)


@dataclass
class BaseTrainingConfig(TrainerConfig):
    """Base config to define the basic 🐸TTS training parameters that are shared
    among all the models. It is based on ```Trainer.TrainingConfig```.

    Args:
        model (str):
            Name of the model that is used in the training.

        num_loader_workers (int):
            Number of workers for training time dataloader.

        num_eval_loader_workers (int):
            Number of workers for evaluation time dataloader.
    """

    model: str = None
    # dataloading
    num_loader_workers: int = 0
    num_eval_loader_workers: int = 0
    use_noise_augment: bool = False