File size: 4,744 Bytes
8e5c8e3 9b5b26a c19d193 168a50f 8fc2f79 6aae614 8fe992b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a 8c01ffb 8fc2f79 a661a66 8fc2f79 770acb8 8fc2f79 168a50f a661a66 8fc2f79 168a50f 8fc2f79 a661a66 168a50f 8fc2f79 20f0fdd 42c1a54 8fc2f79 168a50f 8c01ffb a3e564f 6aae614 ae7a494 89f8f7a f30ae19 ae7a494 f30ae19 ae7a494 89f8f7a 13d500a 8c01ffb 9b5b26a 8c01ffb 42c1a54 a3e564f 42c1a54 861422e 9b5b26a 8c01ffb 8fe992b 42c1a54 8c01ffb e25c5d8 8fe992b 9b5b26a 14ebd73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, LiteLLMModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
import calendar
import re
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
def fetch_page_text(url: str) -> str:
"""Retrievies only readable text from the webpage"""
try:
r = requests.get(url, timeout=10)
soup = BeautifulSoup(r.text, 'html.parser')
paragraphs = soup.find_all('p')
return '\n'.join(p.get_text() for p in paragraphs if p.get_text().strip())
except Exception as e:
return f"Unable to access page: {e}"
def web_search(query: str, max_results: int = 5) -> list:
"""Simple DuckDuckGo web search via DDGS"""
try:
with DDGS() as ddgs:
return ddgs.text(query, max_results=max_results, backend="lite")
except Exception as e:
return [{"title": "Search failed", "href": "", "body": str(e)}]
@tool
def atp_player_tournament(player: str, month: str, year: str) -> str:
"""
Finds ATP tournaments possibly involving a given player in a specific month and year,
returning titles, links, and full text of web pages to let the LLM analyze them directly.
Args:
player: Player name or surname (e.g., Sinner, Alcaraz).
month: Month name (e.g., January, Feb).
year: 4-digit year (e.g., 2024, 2025).
"""
# --- VALIDATION ---
try:
month_number = list(calendar.month_name).index(month.capitalize())
month_full = calendar.month_name[month_number]
except ValueError:
return f"Invalid month: '{month}'"
if not re.fullmatch(r"\d{4}", year):
return f"Invalid year: '{year}'"
query = f"{player} ATP tournaments {month_full} {year}"
results = web_search(query)
if not results or not isinstance(results, list):
return f"No results found for {player} in {month_full} {year}.\nQuery used: '{query}'"
# --- OUTPUT COMPOSITION ---
output = f"Tournaments for {player} in {month_full} {year}:\n\n"
for r in results[:3]:
title = r.get("title", "No title")
url = r.get("href", "")
text = fetch_page_text(url)
output += f"{title}\n {url}\nContent preview:\n{text[:1500]}...\n\n"
web_search = DuckDuckGoSearchTool()
final_answer = FinalAnswerTool()
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct'
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id=model_id,# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )
MISTRAL_SMALL_LATEST = "mistral/mistral-small-latest"
model = LiteLLMModel(
model_id=MISTRAL_SMALL_LATEST,
max_tokens=2096,
temperature=0.5,
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
enabled_tools = [
final_answer,
atp_player_tournament,
image_generation_tool,
web_search
]
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=enabled_tools, ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |