Spaces:
Sleeping
Sleeping
File size: 27,624 Bytes
44f2ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import get_activation
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
from diffusers.models.lora import LoRACompatibleLinear
from .attention_processor import Attention
import math
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x, objs):
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
final_dropout: bool = False,
attention_type: str = "default",
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
**kwargs,
):
# Notice that normalization is always applied before the real computation in the following blocks.
if attention_mask is not None and not isinstance(attention_mask, list):
if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]:
tmp = attention_mask.clone()
scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1]))
try:
tmp = tmp.reshape(tmp.shape[0], 40, 72)
except:
try:
tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT
except:
tmp = tmp.reshape(tmp.shape[0], 96, 96)
tmp = tmp[:, ::scale_factor, ::scale_factor]
tmp = tmp.reshape(tmp.shape[0], 1, -1)
attention_mask = tmp
if attention_mask is not None:
tmp = attention_mask.clone()
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
tmp = (1-tmp)
orig_attn_mask = attention_mask.clone()
else:
# tmp = 0
tmp =1
orig_attn_mask = None
if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
attention_mask_2d = attention_mask + attention_mask.permute(0,2,1)
# Get it back to original range. This step is optional tbh
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype)
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
attention_mask_2d = attention_mask_2d * tmp_attention
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype)
attention_mask = attention_mask_2d
# Multiple objects
elif attention_mask is not None and isinstance(attention_mask, list):
if hidden_states.shape[1] != attention_mask[0].shape[-1]:
new_attention_mask = []
for attn_mask in attention_mask:
tmp = attn_mask.clone()
scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1]))
try:
tmp = tmp.reshape(tmp.shape[0], 40, 72)
except:
tmp = tmp.reshape(tmp.shape[0], 32, 32)
tmp = tmp[:, ::scale_factor, ::scale_factor]
tmp = tmp.reshape(tmp.shape[0], 1, -1)
new_attention_mask.append(tmp)
attention_mask = new_attention_mask
orig_attn_mask = []
for attn_mask in attention_mask:
tmp = attn_mask.clone()
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
tmp = (1-tmp)
orig_attn_mask.append(attn_mask.clone())
if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
attn_mask_2d = []
for attn_mask in attention_mask:
attention_mask_2d = attn_mask + attn_mask.permute(0,2,1)
# Get it back to original range. This step is optional tbh
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype)
attn_mask_2d.append(attention_mask_2d)
attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0)
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype)
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
attention_mask_2d = attention_mask_2d * tmp_attention
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype)
attention_mask = attention_mask_2d
else:
tmp = 1
orig_attn_mask = None
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
# breakpoint()
## self-attention amongst fg
attn_output = self.attn1(
norm_hidden_states, # + tmp,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if attention_mask is not None:
tmp = 1-tmp
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.5 ends
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp)
)
if encoder_attention_mask is None:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
if encoder_attention_mask is not None: # Encoder attention mask is not None
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
if not isinstance(orig_attn_mask, list):
orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device)
encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1)
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype)
inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype)
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype)
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype)
encoder_attention_mask = encoder_attention_mask_2d
else:
orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask]
encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)]
encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d]
inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype)
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype)
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.)
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype)
encoder_attention_mask = encoder_attention_mask_2d
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
## cross-attention amongst bg
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention
torch.cuda.empty_cache()
hidden_states = attn_output + hidden_states
else:
norm_hidden_states2 = (
self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp))
)
encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device)
encoder_attention_mask2[:, :, 0] = -10000
attn_output2 = self.attn2(
norm_hidden_states2,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask2,
**cross_attention_kwargs,
)
hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states
else:
hidden_states = attn_output*tmp + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh")
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states, scale: float = 1.0):
for module in self.net:
if isinstance(module, (LoRACompatibleLinear, GEGLU)):
hidden_states = module(hidden_states, scale)
else:
hidden_states = module(hidden_states)
return hidden_states
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
self.approximate = approximate
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate, approximate=self.approximate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states, scale: float = 1.0):
hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
"""
The approximate form of Gaussian Error Linear Unit (GELU)
For more details, see section 2: https://arxiv.org/abs/1606.08415
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
def forward(self, x):
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class AdaLayerNormZero(nn.Module):
"""
Norm layer adaptive layer norm zero (adaLN-Zero).
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, timestep, class_labels, hidden_dtype=None):
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaGroupNorm(nn.Module):
"""
GroupNorm layer modified to incorporate timestep embeddings.
"""
def __init__(
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
):
super().__init__()
self.num_groups = num_groups
self.eps = eps
if act_fn is None:
self.act = None
else:
self.act = get_activation(act_fn)
self.linear = nn.Linear(embedding_dim, out_dim * 2)
def forward(self, x, emb):
if self.act:
emb = self.act(emb)
emb = self.linear(emb)
emb = emb[:, :, None, None]
scale, shift = emb.chunk(2, dim=1)
x = F.group_norm(x, self.num_groups, eps=self.eps)
x = x * (1 + scale) + shift
return x
|