File size: 10,144 Bytes
b326a58
2acd461
eb3434c
2acd461
 
 
 
4677c24
2acd461
 
b326a58
 
1c3c84c
b326a58
75f64b7
 
4677c24
2acd461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4677c24
2acd461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b326a58
e906813
96ac6d4
2acd461
 
b326a58
 
2acd461
 
 
b326a58
2acd461
 
 
 
 
 
1c3c84c
 
 
 
b326a58
1c3c84c
 
2acd461
 
 
 
 
 
 
 
96ac6d4
1c3c84c
b326a58
2acd461
 
1c3c84c
b326a58
96ac6d4
 
 
4677c24
1c3c84c
 
2acd461
 
 
 
 
 
 
 
 
 
1c3c84c
 
 
2acd461
b326a58
96ac6d4
 
4677c24
 
96ac6d4
 
 
 
4677c24
b326a58
 
2acd461
 
 
 
 
 
 
1c3c84c
2acd461
4677c24
 
 
 
 
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
2acd461
 
4677c24
 
 
96ac6d4
4677c24
b326a58
 
 
96ac6d4
 
 
4677c24
b326a58
96ac6d4
1c3c84c
96ac6d4
 
82bac73
 
 
 
96ac6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acd461
4677c24
 
96ac6d4
 
b326a58
 
96ac6d4
 
 
2acd461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from transformers import RobertaTokenizer, RobertaForMaskedLM, GPT2Tokenizer
import torch
import tensorflow as tf
import wikipedia
import re
import random
import nltk
from aitextgen import aitextgen
nltk.download('cmudict')

roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
roberta_model = RobertaForMaskedLM.from_pretrained('roberta-base')

gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
gpt2_model = aitextgen(tf_gpt2="355M")
#gpt2_model = aitextgen()

frequent_words = set()
        
with open("wordFrequency.txt", 'r') as f:
    line = f.readline()
    while line != '':  # The EOF char is an empty string
        frequent_words.add(line.strip())
        line = f.readline()

def filter_rhymes(word):
    filter_list = ['to', 'on', 'has', 'but', 'the', 'in', 'and', 'a', 'aitch', 'angst', 'arugula', 'beige', 'blitzed', 'boing', 'bombed', 'cairn', 'chaos', 'chocolate', 'circle', 'circus', 'cleansed', 'coif', 'cusp', 'doth', 'else', 'eth', 'fiends', 'film', 'flange', 'fourths', 'grilse', 'gulf', 'kiln', 'loge', 'midst', 'month', 'music', 'neutron', 'ninja', 'oblige', 'oink', 'opus', 'orange', 'pint', 'plagued', 'plankton', 'plinth', 'poem', 'poet', 'purple', 'quaich', 'rhythm', 'rouged', 'silver', 'siren', 'soldier', 'sylph', 'thesp', 'toilet', 'torsk', 'tufts', 'waltzed', 'wasp', 'wharves', 'width', 'woman', 'yttrium'] 
    if word in filter_list:
        return False
    else:
        return True

def remove_punctuation(text):
    text = re.sub(r'[^\w\s]', '', text)
    text = text.replace("\n", " ")
    return text

def get_rhymes(inp, level):
    entries = nltk.corpus.cmudict.entries()
    syllables = [(word, syl) for word, syl in entries if word == inp]
    rhymes = []
    filtered_rhymes = set()
    for (word, syllable) in syllables:
        rhymes += [word for word, pron in entries if pron[-level:] == syllable[-level:]]
    
    for word in rhymes:
        if (word in frequent_words) and (word != inp):
            filtered_rhymes.add(word)
    return filtered_rhymes

def get_inputs_length(input):
    input_ids = gpt2_tokenizer(input)['input_ids']
    return len(input_ids)
	
def get_prediction(sent):
    
    token_ids = roberta_tokenizer.encode(sent, return_tensors='pt')
    masked_position = (token_ids.squeeze() == roberta_tokenizer.mask_token_id).nonzero()
    masked_pos = [mask.item() for mask in masked_position ]

    with torch.no_grad():
        output = roberta_model(token_ids)

    last_hidden_state = output[0].squeeze()

    list_of_list =[]
    for index,mask_index in enumerate(masked_pos):
        words = []
        while not words:
            mask_hidden_state = last_hidden_state[mask_index]
            idx = torch.topk(mask_hidden_state, k=5, dim=0)[1]
            for i in idx:
                word = roberta_tokenizer.decode(i.item()).strip()
                if (remove_punctuation(word) != "") and (word != '</s>'):
                    words.append(word)
        list_of_list.append(words)
        print(f"Mask {index+1} Guesses: {words}")
    
    best_guess = ""
    for j in list_of_list:
        best_guess = best_guess+" "+j[0]
        
    return best_guess
	
def get_line(prompt, inputs_len):
    line = gpt2_model.generate_one(prompt=prompt + ".", max_length=inputs_len + 7, min_length=4)[len(prompt)+2:]
    return line

def get_rhyming_line(prompt, rhyming_word, inputs_len):
    gpt2_sentence = gpt2_model.generate_one(prompt=prompt + ".", max_length=inputs_len + 4, min_length=2)[len(prompt)+2:]
    while len(gpt2_sentence) == 0:
        gpt2_sentence = gpt2_model.generate_one(prompt=prompt + ".", max_length=inputs_len + 4, min_length=2)[len(prompt)+2:]
    
    gpt2_sentence = gpt2_sentence.replace("\n", "")
    print(f"\nGetting rhyming line starting with '{gpt2_sentence}' and ending with rhyming word '{rhyming_word}'")
    sentence = gpt2_sentence + " ___ ___ ___ " + rhyming_word
    print(f"Original Sentence: {sentence}")
    if sentence[-1] != ".":
        sentence = sentence.replace("___","<mask>") + "."
    else:
        sentence = sentence.replace("___","<mask>")
    print(f"Original Sentence replaced with mask: {sentence}")
    print("\n")
 
    predicted_blanks = get_prediction(sentence)
    print(f"\nBest guess for fill in the blanks: {predicted_blanks}")
    final_sentence = gpt2_sentence + predicted_blanks + " " + rhyming_word
    print(f"Final Sentence: {final_sentence}")
    return final_sentence

def gpt2_summary(topic):
    return gpt2_model.generate_one(prompt=f"Here is some information about {topic}.", top_k=100, top_p=0.95, min_length=200)
	
def generate(topic, wiki=True):
    if wiki:
        try:
            topic_summary = remove_punctuation(wikipedia.summary(topic))
        except:
            return(f"Method A struggled to find information about {topic}, please try a different topic!")
    else:
        topic_summary = remove_punctuation(gpt2_summary(topic))

    word_list = topic_summary.split()
    topic_summary_len = len(topic_summary)
    no_of_words = len(word_list)
    inputs_len = get_inputs_length(topic_summary)
    print(f"Topic Summary: {topic_summary}")
    print(f"Topic Summary Length: {topic_summary_len}")
    print(f"No of Words in Summary: {no_of_words}")
    print(f"Length of Input IDs: {inputs_len}")         

    rhyming_words_125 = []
    while len(rhyming_words_125) < 3 or valid_rhyme == False or len(first_line) == 0:
        first_line = get_line(topic_summary, inputs_len)
        if first_line:
            end_word = remove_punctuation(first_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            if valid_rhyme:
                print(f"\nFirst Line: {first_line}")
                rhyming_words_125 = list(get_rhymes(end_word, 3))
                print(f"Rhyming words for '{end_word}' are {rhyming_words_125}")
                limerick = first_line + "\n"

    rhyming_word = random.choice(rhyming_words_125)
    rhyming_words_125.remove(rhyming_word)
    prompt = topic_summary + " " + first_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    second_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nSecond Line: {second_line}")
    limerick += second_line + "\n"

    rhyming_words_34 = []
    prompt = prompt + " " + second_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    while len(rhyming_words_34) < 2 or valid_rhyme == False or len(third_line) == 0:
        third_line = get_line(prompt, inputs_len)
        if third_line:
            print(f"\nThird Line: {third_line}")
            end_word = remove_punctuation(third_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            print(f"Does '{end_word}' have valid rhymes: {valid_rhyme}")
            rhyming_words_34 = list(get_rhymes(end_word, 3))
            print(f"Rhyming words for '{end_word}' are {rhyming_words_34}")
            if valid_rhyme and len(rhyming_words_34) > 1:
                limerick += third_line + "\n"

    rhyming_word = random.choice(rhyming_words_34)
    rhyming_words_34.remove(rhyming_word)
    prompt = prompt + " " + third_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    fourth_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nFourth Line: {fourth_line}")
    limerick += fourth_line + "\n"

    rhyming_word = random.choice(rhyming_words_125)
    rhyming_words_125.remove(rhyming_word)
    prompt = prompt + " " + fourth_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    fifth_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nFifth Line: {fifth_line}")
    limerick += fifth_line + "\n"

    print("\n")
    print(limerick)

    return limerick
	
def compare_summaries(topic):
    wiki_limerick = generate(topic)
    gpt2_limerick = generate(topic, wiki=False)

    output1 = wiki_limerick
    output2 = gpt2_limerick
    print(output1 + "\n" + output2)

    return output1, output2
	
import gradio as gr
description = "Generates limericks (five-line poems with a rhyme scheme of AABBA) via two different methods"
article = '<center><big><strong>Limerick Generation</strong></big></center>'\
        '<center><strong>By Ans Farooq</strong></center>'\
        '<center><small>Level 4 Individual Project</small></center>'\
        '<center><small>BSc Computing Science</small></center>'\
        '<center><small>University of Glasgow</small></center>'\
        '<strong>Description</strong><br>'\
        'Recent advances in natural language processing (NLP) have shown '\
        'incredible promise at generating human-quality language. Poetry '\
        'presents an additional challenge as it often relies on rhyme and '\
        'rhythm of language. Factoring these in presents an interesting '\
        'challenge to new deep learning-based methods. This text-generation '\
        'project examines the use of transformer-based deep learning methods '\
        'and the addition of constraints for length, rhyme and rhythm given '\
        'example words to seed a poem. This interface allows you to produce two '\
        'cohesive limericks automatically, using two different methods. The '\
        'results of this project are to be evaluated through human comparisons.'

input = gr.inputs.Textbox(label='Topic')
output1 = gr.outputs.Textbox(label='Method A')
output2 = gr.outputs.Textbox(label='Method B')

interface = gr.Interface(
    fn=compare_summaries, 
    inputs=input, 
    outputs=[output1, output2],
    title="Text-generation with rhyme and rhythm",
    layout="horizontal",
    theme="peach",
    description=description,
    article=article)
interface.launch(debug=True)