File size: 9,210 Bytes
2acd461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline, GPT2TokenizerFast
import torch
import pronouncing
import wikipedia
import re
import random
import nltk
import syllables
import gradio as gr
nltk.download('cmudict')

frequent_words = set()

def set_seed(seed: int):
    """

    Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if

    installed).



    Args:

        seed (:obj:`int`): The seed to set.

    """
    #random.seed(seed)
    #np.random.seed(seed)
    #if is_torch_available():
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
    #if is_tf_available():
        #tf.random.set_seed(seed)
        
with open("wordFrequency.txt", 'r') as f:
    line = f.readline()
    while line != '':  # The EOF char is an empty string
        frequent_words.add(line.strip())
        line = f.readline()

def filter_rhymes(word):
    filter_list = ['to', 'on', 'has', 'but', 'the', 'in', 'and', 'a', 'aitch', 'angst', 'arugula', 'beige', 'blitzed', 'boing', 'bombed', 'cairn', 'chaos', 'chocolate', 'circle', 'circus', 'cleansed', 'coif', 'cusp', 'doth', 'else', 'eth', 'fiends', 'film', 'flange', 'fourths', 'grilse', 'gulf', 'kiln', 'loge', 'midst', 'month', 'music', 'neutron', 'ninja', 'oblige', 'oink', 'opus', 'orange', 'pint', 'plagued', 'plankton', 'plinth', 'poem', 'poet', 'purple', 'quaich', 'rhythm', 'rouged', 'silver', 'siren', 'soldier', 'sylph', 'thesp', 'toilet', 'torsk', 'tufts', 'waltzed', 'wasp', 'wharves', 'width', 'woman', 'yttrium'] 
    if word in filter_list:
        return False
    else:
        return True

def remove_punctuation(text):
    text = re.sub(r'[^\w\s]', '', text)
    return text

def get_rhymes(inp, level):
    entries = nltk.corpus.cmudict.entries()
    syllables = [(word, syl) for word, syl in entries if word == inp]
    rhymes = []
    filtered_rhymes = set()
    for (word, syllable) in syllables:
        rhymes += [word for word, pron in entries if pron[-level:] == syllable[-level:]]
    
    for word in rhymes:
        if (word in frequent_words) and (word != inp):
            filtered_rhymes.add(word)
    return filtered_rhymes

def get_inputs_length(input):
  gpt2_tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
  input_ids = gpt2_tokenizer(input)['input_ids']
  return len(input_ids)
  
 tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('roberta-base')
text_generation = pipeline("text-generation")
set_seed(0)
    
def get_prediction(sent):
    
    token_ids = tokenizer.encode(sent, return_tensors='pt')
    masked_position = (token_ids.squeeze() == tokenizer.mask_token_id).nonzero()
    masked_pos = [mask.item() for mask in masked_position ]

    with torch.no_grad():
        output = model(token_ids)

    last_hidden_state = output[0].squeeze()

    list_of_list =[]
    for index,mask_index in enumerate(masked_pos):
        words = []
        mask_hidden_state = last_hidden_state[mask_index]
        idx = torch.topk(mask_hidden_state, k=5, dim=0)[1]
        for i in idx:
            word = tokenizer.decode(i.item()).strip()
            if (remove_punctuation(word) != "") and (word != '</s>'):
                words.append(word)
        #words = [tokenizer.decode(i.item()).strip() for i in idx]
        list_of_list.append(words)
        print(f"Mask {index+1} Guesses: {words}")
    
    best_guess = ""
    for j in list_of_list:
        best_guess = best_guess+" "+j[0]
        
    return best_guess
    
def get_line(topic_summary, starting_words, inputs_len):
    starting_word = random.choice(starting_words)
    line = starting_word + text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 6, do_sample=True, return_full_text=False)[0]['generated_text']
    return line

def get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len):
    #gpt2_sentence = text_generation(topic_summary + " " + starting_words[i][j], max_length=no_of_words + 4, do_sample=False)[0]
    starting_word = random.choice(starting_words)
    print(f"\nGetting rhyming line with starting word '{starting_word}' and rhyming word '{rhyming_word}'")
    gpt2_sentence = text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 2, do_sample=True, return_full_text=False)[0]
    #sentence = gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_words[i][j]
    sentence = starting_word + gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_word
    print(f"Original Sentence: {sentence}")
    if sentence[-1] != ".":
        sentence = sentence.replace("___","<mask>") + "."
    else:
        sentence = sentence.replace("___","<mask>")
    print(f"Original Sentence replaced with mask: {sentence}")
    print("\n")
 
    predicted_blanks = get_prediction(sentence)
    print(f"\nBest guess for fill in the blanks: {predicted_blanks}")
    return starting_word + gpt2_sentence['generated_text'] + predicted_blanks + " " + rhyming_word
    
from transformers import pipeline

def generate(topic):
    text_generation = pipeline("text-generation")

    limericks = []

    #topic = input("Please enter a topic: ")
    topic_summary = remove_punctuation(wikipedia.summary(topic))
    # if len(topic_summary) > 2000:
    #   topic_summary = topic_summary[:2000]
    word_list = topic_summary.split()
    topic_summary_len = len(topic_summary)
    no_of_words = len(word_list)
    inputs_len = get_inputs_length(topic_summary)
    print(f"Topic Summary: {topic_summary}")
    print(f"Topic Summary Length: {topic_summary_len}")
    print(f"No of Words in Summary: {no_of_words}")
    print(f"Length of Input IDs: {inputs_len}")

    starting_words = ["That", "Had", "Not", "But", "With", "I", "Because", "There", "Who", "She", "He", "To", "Whose", "In", "And", "When", "Or", "So", "The", "Of", "Every", "Whom"]

    # starting_words = [["That", "Had", "Not", "But", "That"], 
    #                   ["There", "Who", "She", "Tormenting", "Til"],
    #                   ["Relentless", "This", "First", "and", "then"],
    #                   ["There", "Who", "That", "To", "She"],
    #                   ["There", "Who", "Two", "Four", "Have"]]

    # rhyming_words = [["told", "bold", "woodchuck", "truck", "road"], 
    #                  ["Nice", "grease", "house", "spouse", "peace"],
    #                  ["deadlines", "lines", "edits", "credits", "wine"],
    #                  ["Lynn", "thin", "essayed", "lemonade", "in"],
    #                  ["beard", "feared", "hen", "wren", "beard"]]                 

    for i in range(5):
        print(f"\nGenerating limerick {i+1}")
        rhyming_words_125 = []
        while len(rhyming_words_125) < 3 or valid_rhyme == False:
            first_line = get_line(topic_summary, starting_words, inputs_len)
            #rhyming_words = pronouncing.rhymes(first_line.split()[-1])
            end_word = remove_punctuation(first_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            if valid_rhyme:
                print(f"\nFirst Line: {first_line}")
                rhyming_words_125 = list(get_rhymes(end_word, 3))
                print(f"Rhyming words for '{end_word}' are {rhyming_words_125}")
                limerick = first_line + "\n"

        rhyming_word = rhyming_words_125[0]
        second_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
        limerick += second_line + "\n"

        rhyming_words_34 = []
        while len(rhyming_words_34) < 2 or valid_rhyme == False:
            third_line = get_line(topic_summary, starting_words, inputs_len)
            print(f"\nThird Line: {third_line}")
            #rhyming_words = pronouncing.rhymes(first_line.split()[-1])
            end_word = remove_punctuation(third_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            print(f"Does '{end_word}'' have valid rhymes: {valid_rhyme}")
            rhyming_words_34 = list(get_rhymes(end_word, 3))
            print(f"Rhyming words for '{end_word}' are {rhyming_words_34}")
            if valid_rhyme and len(rhyming_words_34) > 1:
                limerick += third_line + "\n"

        rhyming_word = rhyming_words_34[0]
        fourth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
        limerick += fourth_line + "\n"

        rhyming_word = rhyming_words_125[1]
        fifth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
        limerick += fifth_line + "\n"

        limericks.append(limerick)

    print("\n")
    output = f"Generated {len(limericks)} limericks: \n"

    print(f"Generated {len(limericks)} limericks: \n")
    for limerick in limericks:
        print(limerick)
        output += limerick

    return output

interface = gr.Interface(fn=generate, inputs="text", outputs="text")
interface.launch(debug=True)