Spaces:
Sleeping
Sleeping
File size: 9,210 Bytes
2acd461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline, GPT2TokenizerFast
import torch
import pronouncing
import wikipedia
import re
import random
import nltk
import syllables
import gradio as gr
nltk.download('cmudict')
frequent_words = set()
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if
installed).
Args:
seed (:obj:`int`): The seed to set.
"""
#random.seed(seed)
#np.random.seed(seed)
#if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
#if is_tf_available():
#tf.random.set_seed(seed)
with open("wordFrequency.txt", 'r') as f:
line = f.readline()
while line != '': # The EOF char is an empty string
frequent_words.add(line.strip())
line = f.readline()
def filter_rhymes(word):
filter_list = ['to', 'on', 'has', 'but', 'the', 'in', 'and', 'a', 'aitch', 'angst', 'arugula', 'beige', 'blitzed', 'boing', 'bombed', 'cairn', 'chaos', 'chocolate', 'circle', 'circus', 'cleansed', 'coif', 'cusp', 'doth', 'else', 'eth', 'fiends', 'film', 'flange', 'fourths', 'grilse', 'gulf', 'kiln', 'loge', 'midst', 'month', 'music', 'neutron', 'ninja', 'oblige', 'oink', 'opus', 'orange', 'pint', 'plagued', 'plankton', 'plinth', 'poem', 'poet', 'purple', 'quaich', 'rhythm', 'rouged', 'silver', 'siren', 'soldier', 'sylph', 'thesp', 'toilet', 'torsk', 'tufts', 'waltzed', 'wasp', 'wharves', 'width', 'woman', 'yttrium']
if word in filter_list:
return False
else:
return True
def remove_punctuation(text):
text = re.sub(r'[^\w\s]', '', text)
return text
def get_rhymes(inp, level):
entries = nltk.corpus.cmudict.entries()
syllables = [(word, syl) for word, syl in entries if word == inp]
rhymes = []
filtered_rhymes = set()
for (word, syllable) in syllables:
rhymes += [word for word, pron in entries if pron[-level:] == syllable[-level:]]
for word in rhymes:
if (word in frequent_words) and (word != inp):
filtered_rhymes.add(word)
return filtered_rhymes
def get_inputs_length(input):
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
input_ids = gpt2_tokenizer(input)['input_ids']
return len(input_ids)
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('roberta-base')
text_generation = pipeline("text-generation")
set_seed(0)
def get_prediction(sent):
token_ids = tokenizer.encode(sent, return_tensors='pt')
masked_position = (token_ids.squeeze() == tokenizer.mask_token_id).nonzero()
masked_pos = [mask.item() for mask in masked_position ]
with torch.no_grad():
output = model(token_ids)
last_hidden_state = output[0].squeeze()
list_of_list =[]
for index,mask_index in enumerate(masked_pos):
words = []
mask_hidden_state = last_hidden_state[mask_index]
idx = torch.topk(mask_hidden_state, k=5, dim=0)[1]
for i in idx:
word = tokenizer.decode(i.item()).strip()
if (remove_punctuation(word) != "") and (word != '</s>'):
words.append(word)
#words = [tokenizer.decode(i.item()).strip() for i in idx]
list_of_list.append(words)
print(f"Mask {index+1} Guesses: {words}")
best_guess = ""
for j in list_of_list:
best_guess = best_guess+" "+j[0]
return best_guess
def get_line(topic_summary, starting_words, inputs_len):
starting_word = random.choice(starting_words)
line = starting_word + text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 6, do_sample=True, return_full_text=False)[0]['generated_text']
return line
def get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len):
#gpt2_sentence = text_generation(topic_summary + " " + starting_words[i][j], max_length=no_of_words + 4, do_sample=False)[0]
starting_word = random.choice(starting_words)
print(f"\nGetting rhyming line with starting word '{starting_word}' and rhyming word '{rhyming_word}'")
gpt2_sentence = text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 2, do_sample=True, return_full_text=False)[0]
#sentence = gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_words[i][j]
sentence = starting_word + gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_word
print(f"Original Sentence: {sentence}")
if sentence[-1] != ".":
sentence = sentence.replace("___","<mask>") + "."
else:
sentence = sentence.replace("___","<mask>")
print(f"Original Sentence replaced with mask: {sentence}")
print("\n")
predicted_blanks = get_prediction(sentence)
print(f"\nBest guess for fill in the blanks: {predicted_blanks}")
return starting_word + gpt2_sentence['generated_text'] + predicted_blanks + " " + rhyming_word
from transformers import pipeline
def generate(topic):
text_generation = pipeline("text-generation")
limericks = []
#topic = input("Please enter a topic: ")
topic_summary = remove_punctuation(wikipedia.summary(topic))
# if len(topic_summary) > 2000:
# topic_summary = topic_summary[:2000]
word_list = topic_summary.split()
topic_summary_len = len(topic_summary)
no_of_words = len(word_list)
inputs_len = get_inputs_length(topic_summary)
print(f"Topic Summary: {topic_summary}")
print(f"Topic Summary Length: {topic_summary_len}")
print(f"No of Words in Summary: {no_of_words}")
print(f"Length of Input IDs: {inputs_len}")
starting_words = ["That", "Had", "Not", "But", "With", "I", "Because", "There", "Who", "She", "He", "To", "Whose", "In", "And", "When", "Or", "So", "The", "Of", "Every", "Whom"]
# starting_words = [["That", "Had", "Not", "But", "That"],
# ["There", "Who", "She", "Tormenting", "Til"],
# ["Relentless", "This", "First", "and", "then"],
# ["There", "Who", "That", "To", "She"],
# ["There", "Who", "Two", "Four", "Have"]]
# rhyming_words = [["told", "bold", "woodchuck", "truck", "road"],
# ["Nice", "grease", "house", "spouse", "peace"],
# ["deadlines", "lines", "edits", "credits", "wine"],
# ["Lynn", "thin", "essayed", "lemonade", "in"],
# ["beard", "feared", "hen", "wren", "beard"]]
for i in range(5):
print(f"\nGenerating limerick {i+1}")
rhyming_words_125 = []
while len(rhyming_words_125) < 3 or valid_rhyme == False:
first_line = get_line(topic_summary, starting_words, inputs_len)
#rhyming_words = pronouncing.rhymes(first_line.split()[-1])
end_word = remove_punctuation(first_line.split()[-1])
valid_rhyme = filter_rhymes(end_word)
if valid_rhyme:
print(f"\nFirst Line: {first_line}")
rhyming_words_125 = list(get_rhymes(end_word, 3))
print(f"Rhyming words for '{end_word}' are {rhyming_words_125}")
limerick = first_line + "\n"
rhyming_word = rhyming_words_125[0]
second_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += second_line + "\n"
rhyming_words_34 = []
while len(rhyming_words_34) < 2 or valid_rhyme == False:
third_line = get_line(topic_summary, starting_words, inputs_len)
print(f"\nThird Line: {third_line}")
#rhyming_words = pronouncing.rhymes(first_line.split()[-1])
end_word = remove_punctuation(third_line.split()[-1])
valid_rhyme = filter_rhymes(end_word)
print(f"Does '{end_word}'' have valid rhymes: {valid_rhyme}")
rhyming_words_34 = list(get_rhymes(end_word, 3))
print(f"Rhyming words for '{end_word}' are {rhyming_words_34}")
if valid_rhyme and len(rhyming_words_34) > 1:
limerick += third_line + "\n"
rhyming_word = rhyming_words_34[0]
fourth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += fourth_line + "\n"
rhyming_word = rhyming_words_125[1]
fifth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += fifth_line + "\n"
limericks.append(limerick)
print("\n")
output = f"Generated {len(limericks)} limericks: \n"
print(f"Generated {len(limericks)} limericks: \n")
for limerick in limericks:
print(limerick)
output += limerick
return output
interface = gr.Interface(fn=generate, inputs="text", outputs="text")
interface.launch(debug=True) |