File size: 8,391 Bytes
b326a58
2acd461
 
 
 
 
4677c24
2acd461
 
b326a58
 
1c3c84c
b326a58
 
4677c24
2acd461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4677c24
2acd461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b326a58
e906813
2acd461
 
 
b326a58
 
2acd461
 
 
b326a58
2acd461
 
 
 
 
 
1c3c84c
 
 
 
b326a58
1c3c84c
 
2acd461
 
 
 
 
 
 
 
b326a58
1c3c84c
b326a58
2acd461
 
1c3c84c
b326a58
4677c24
1c3c84c
 
2acd461
 
 
 
 
 
 
 
 
 
1c3c84c
 
 
2acd461
b326a58
 
 
4677c24
 
 
 
b326a58
 
2acd461
 
 
 
 
 
 
1c3c84c
2acd461
4677c24
 
 
 
 
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
 
b326a58
 
4677c24
 
 
 
 
 
 
2acd461
 
4677c24
 
 
2acd461
4677c24
b326a58
 
 
 
 
 
 
4677c24
b326a58
2acd461
1c3c84c
2acd461
4677c24
 
 
b326a58
 
 
 
2acd461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from transformers import RobertaTokenizer, RobertaForMaskedLM, GPT2Tokenizer
import torch
import wikipedia
import re
import random
import nltk
from aitextgen import aitextgen
nltk.download('cmudict')

roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
roberta_model = RobertaForMaskedLM.from_pretrained('roberta-base')

gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
gpt2_model = aitextgen(tf_gpt2="355M")

frequent_words = set()
        
with open("wordFrequency.txt", 'r') as f:
    line = f.readline()
    while line != '':  # The EOF char is an empty string
        frequent_words.add(line.strip())
        line = f.readline()

def filter_rhymes(word):
    filter_list = ['to', 'on', 'has', 'but', 'the', 'in', 'and', 'a', 'aitch', 'angst', 'arugula', 'beige', 'blitzed', 'boing', 'bombed', 'cairn', 'chaos', 'chocolate', 'circle', 'circus', 'cleansed', 'coif', 'cusp', 'doth', 'else', 'eth', 'fiends', 'film', 'flange', 'fourths', 'grilse', 'gulf', 'kiln', 'loge', 'midst', 'month', 'music', 'neutron', 'ninja', 'oblige', 'oink', 'opus', 'orange', 'pint', 'plagued', 'plankton', 'plinth', 'poem', 'poet', 'purple', 'quaich', 'rhythm', 'rouged', 'silver', 'siren', 'soldier', 'sylph', 'thesp', 'toilet', 'torsk', 'tufts', 'waltzed', 'wasp', 'wharves', 'width', 'woman', 'yttrium'] 
    if word in filter_list:
        return False
    else:
        return True

def remove_punctuation(text):
    text = re.sub(r'[^\w\s]', '', text)
    text = text.replace("\n", " ")
    return text

def get_rhymes(inp, level):
    entries = nltk.corpus.cmudict.entries()
    syllables = [(word, syl) for word, syl in entries if word == inp]
    rhymes = []
    filtered_rhymes = set()
    for (word, syllable) in syllables:
        rhymes += [word for word, pron in entries if pron[-level:] == syllable[-level:]]
    
    for word in rhymes:
        if (word in frequent_words) and (word != inp):
            filtered_rhymes.add(word)
    return filtered_rhymes

def get_inputs_length(input):
    input_ids = gpt2_tokenizer(input)['input_ids']
    return len(input_ids)
    
def get_prediction(sent):
    
    token_ids = roberta_tokenizer.encode(sent, return_tensors='pt')
    masked_position = (token_ids.squeeze() == roberta_tokenizer.mask_token_id).nonzero()
    masked_pos = [mask.item() for mask in masked_position ]

    with torch.no_grad():
        output = roberta_model(token_ids)

    last_hidden_state = output[0].squeeze()

    list_of_list =[]
    for index,mask_index in enumerate(masked_pos):
        words = []
        while not words:
            mask_hidden_state = last_hidden_state[mask_index]
            idx = torch.topk(mask_hidden_state, k=5, dim=0)[1]
            for i in idx:
                word = roberta_tokenizer.decode(i.item()).strip()
                if (remove_punctuation(word) != "") and (word != '</s>'):
                    words.append(word)
        list_of_list.append(words)
        print(f"Mask {index+1} Guesses: {words}")
    
    best_guess = ""
    for j in list_of_list:
        best_guess = best_guess+" "+j[0]
        
    return best_guess

def get_line(prompt, inputs_len):
    line = gpt2_model.generate_one(prompt=prompt + ".", max_length=inputs_len + 7, min_length=4)[len(prompt)+2:]
    return line

def get_rhyming_line(prompt, rhyming_word, inputs_len):
    gpt2_sentence = gpt2_model.generate_one(prompt=prompt + ".", max_length=inputs_len + 4, min_length=2)[len(prompt)+2:]
    gpt2_sentence = gpt2_sentence.replace("\n", "")
    print(f"\nGetting rhyming line starting with '{gpt2_sentence}' and ending with rhyming word '{rhyming_word}'")
    sentence = gpt2_sentence + " ___ ___ ___ " + rhyming_word
    print(f"Original Sentence: {sentence}")
    if sentence[-1] != ".":
        sentence = sentence.replace("___","<mask>") + "."
    else:
        sentence = sentence.replace("___","<mask>")
    print(f"Original Sentence replaced with mask: {sentence}")
    print("\n")
 
    predicted_blanks = get_prediction(sentence)
    print(f"\nBest guess for fill in the blanks: {predicted_blanks}")
    final_sentence = gpt2_sentence + predicted_blanks + " " + rhyming_word
    print(f"Final Sentence: {final_sentence}")
    return final_sentence

def gpt2_summary(topic):
    return gpt2_model.generate_one(prompt=f"Here is some information about {topic}", top_k=100, top_p=0.95)

def generate(topic, wiki=True):
    if wiki:
        topic_summary = remove_punctuation(wikipedia.summary(topic))
    else:
        topic_summary = remove_punctuation(gpt2_summary(topic))

    word_list = topic_summary.split()
    topic_summary_len = len(topic_summary)
    no_of_words = len(word_list)
    inputs_len = get_inputs_length(topic_summary)
    print(f"Topic Summary: {topic_summary}")
    print(f"Topic Summary Length: {topic_summary_len}")
    print(f"No of Words in Summary: {no_of_words}")
    print(f"Length of Input IDs: {inputs_len}")         

    rhyming_words_125 = []
    while len(rhyming_words_125) < 3 or valid_rhyme == False or len(first_line) == 0:
        first_line = get_line(topic_summary, inputs_len)
        if first_line:
            end_word = remove_punctuation(first_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            if valid_rhyme:
                print(f"\nFirst Line: {first_line}")
                rhyming_words_125 = list(get_rhymes(end_word, 3))
                print(f"Rhyming words for '{end_word}' are {rhyming_words_125}")
                limerick = first_line + "\n"

    rhyming_word = random.choice(rhyming_words_125)
    rhyming_words_125.remove(rhyming_word)
    prompt = topic_summary + " " + first_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    second_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nSecond Line: {second_line}")
    limerick += second_line + "\n"

    rhyming_words_34 = []
    prompt = prompt + " " + second_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    while len(rhyming_words_34) < 2 or valid_rhyme == False or len(third_line) == 0:
        third_line = get_line(prompt, inputs_len)
        if third_line:
            print(f"\nThird Line: {third_line}")
            end_word = remove_punctuation(third_line.split()[-1])
            valid_rhyme = filter_rhymes(end_word)
            print(f"Does '{end_word}' have valid rhymes: {valid_rhyme}")
            rhyming_words_34 = list(get_rhymes(end_word, 3))
            print(f"Rhyming words for '{end_word}' are {rhyming_words_34}")
            if valid_rhyme and len(rhyming_words_34) > 1:
                limerick += third_line + "\n"

    rhyming_word = random.choice(rhyming_words_34)
    rhyming_words_34.remove(rhyming_word)
    prompt = prompt + " " + third_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    fourth_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nFourth Line: {fourth_line}")
    limerick += fourth_line + "\n"

    rhyming_word = random.choice(rhyming_words_125)
    rhyming_words_125.remove(rhyming_word)
    prompt = prompt + " " + fourth_line
    inputs_len = get_inputs_length(prompt)
    print(f"Prompt: {prompt}")
    print(f"Length of prompt: {inputs_len}")
    fifth_line = get_rhyming_line(prompt, rhyming_word, inputs_len)
    print(f"\nFifth Line: {fifth_line}")
    limerick += fifth_line + "\n"

    print("\n")
    print(limerick)

    return limerick

def compare_summaries(topic):
    wiki_limerick = generate(topic)
    gpt2_limerick = generate(topic, wiki=False)

    output1 = f"Limerick with Wikipedia summary of topic as prompt: \n"
    output1 += wiki_limerick + "\n"
    output2 = f"Limerick with GPT-2 summary of topic as prompt: \n"
    output2 += gpt2_limerick

    return output1, output2

import gradio as gr

interface = gr.Interface(
    fn=compare_summaries, 
    inputs="text", 
    outputs=["text", "text"],
    title="Text-generation with rhyme and rhythm",
    layout="horizontal",
    theme="peach")
interface.launch(debug=True)