Spaces:
Sleeping
Sleeping
File size: 3,591 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from typing import Any, Dict, List, Literal, Optional, Union
from exa_py import Exa # type: ignore
from exa_py.api import HighlightsContentsOptions, TextContentsOptions # type: ignore
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_exa._utilities import initialize_client
def _get_metadata(result: Any) -> Dict[str, Any]:
"""Get the metadata from a result object."""
metadata = {
"title": result.title,
"url": result.url,
"id": result.id,
"score": result.score,
"published_date": result.published_date,
"author": result.author,
}
if getattr(result, "highlights"):
metadata["highlights"] = result.highlights
if getattr(result, "highlight_scores"):
metadata["highlight_scores"] = result.highlight_scores
return metadata
class ExaSearchRetriever(BaseRetriever):
"""Exa Search retriever."""
k: int = 10 # num_results
"""The number of search results to return."""
include_domains: Optional[List[str]] = None
"""A list of domains to include in the search."""
exclude_domains: Optional[List[str]] = None
"""A list of domains to exclude from the search."""
start_crawl_date: Optional[str] = None
"""The start date for the crawl (in YYYY-MM-DD format)."""
end_crawl_date: Optional[str] = None
"""The end date for the crawl (in YYYY-MM-DD format)."""
start_published_date: Optional[str] = None
"""The start date for when the document was published (in YYYY-MM-DD format)."""
end_published_date: Optional[str] = None
"""The end date for when the document was published (in YYYY-MM-DD format)."""
use_autoprompt: Optional[bool] = None
"""Whether to use autoprompt for the search."""
type: str = "neural"
"""The type of search, 'keyword' or 'neural'. Default: neural"""
highlights: Optional[Union[HighlightsContentsOptions, bool]] = None
"""Whether to set the page content to the highlights of the results."""
text_contents_options: Union[TextContentsOptions, Literal[True]] = True
"""How to set the page content of the results"""
client: Exa = Field(default=None)
exa_api_key: SecretStr = Field(default=None)
exa_base_url: Optional[str] = None
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate the environment."""
values = initialize_client(values)
return values
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
response = self.client.search_and_contents( # type: ignore[misc]
query,
num_results=self.k,
text=self.text_contents_options,
highlights=self.highlights, # type: ignore
include_domains=self.include_domains,
exclude_domains=self.exclude_domains,
start_crawl_date=self.start_crawl_date,
end_crawl_date=self.end_crawl_date,
start_published_date=self.start_published_date,
end_published_date=self.end_published_date,
use_autoprompt=self.use_autoprompt,
)
results = response.results
return [
Document(
page_content=(result.text),
metadata=_get_metadata(result),
)
for result in results
]
|