Spaces:
Running
Running
File size: 3,254 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# langchain-ai21
This package contains the LangChain integrations for [AI21](https://docs.ai21.com/) through their [AI21](https://pypi.org/project/ai21/) SDK.
## Installation and Setup
- Install the AI21 partner package
```bash
pip install langchain-ai21
```
- Get an AI21 api key and set it as an environment variable (`AI21_API_KEY`)
## Chat Models
This package contains the `ChatAI21` class, which is the recommended way to interface with AI21 Chat models.
To use, install the requirements, and configure your environment.
```bash
export AI21_API_KEY=your-api-key
```
Then initialize
```python
from langchain_core.messages import HumanMessage
from langchain_ai21.chat_models import ChatAI21
chat = ChatAI21(model="jamab-instruct")
messages = [HumanMessage(content="Hello from AI21")]
chat.invoke(messages)
```
For a list of the supported models, see [this page](https://docs.ai21.com/reference/python-sdk#chat)
## LLMs
You can use AI21's generative AI models as Langchain LLMs:
```python
from langchain.prompts import PromptTemplate
from langchain_ai21 import AI21LLM
llm = AI21LLM(model="j2-ultra")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | llm
question = "Which scientist discovered relativity?"
print(chain.invoke({"question": question}))
```
## Embeddings
You can use AI21's embeddings models as:
### Query
```python
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_query("Hello! This is some query")
```
### Document
```python
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_documents(["Hello! This is document 1", "And this is document 2!"])
```
## Task Specific Models
### Contextual Answers
You can use AI21's contextual answers model to receives text or document, serving as a context,
and a question and returns an answer based entirely on this context.
This means that if the answer to your question is not in the document,
the model will indicate it (instead of providing a false answer)
```python
from langchain_ai21 import AI21ContextualAnswers
tsm = AI21ContextualAnswers()
response = tsm.invoke(input={"context": "Your context", "question": "Your question"})
```
You can also use it with chains and output parsers and vector DBs:
```python
from langchain_ai21 import AI21ContextualAnswers
from langchain_core.output_parsers import StrOutputParser
tsm = AI21ContextualAnswers()
chain = tsm | StrOutputParser()
response = chain.invoke(
{"context": "Your context", "question": "Your question"},
)
```
## Text Splitters
### Semantic Text Splitter
You can use AI21's semantic text splitter to split a text into segments.
Instead of merely using punctuation and newlines to divide the text, it identifies distinct topics that will work well together and will form a coherent piece of text.
For a list for examples, see [this page](https://github.com/langchain-ai/langchain/blob/master/docs/docs/modules/data_connection/document_transformers/semantic_text_splitter.ipynb).
```python
from langchain_ai21 import AI21SemanticTextSplitter
splitter = AI21SemanticTextSplitter()
response = splitter.split_text("Your text")
``` |