Spaces:
Runtime error
Runtime error
File size: 18,671 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
{
"cells": [
{
"cell_type": "markdown",
"id": "ba5f8741",
"metadata": {},
"source": [
"# Custom Agent with PlugIn Retrieval\n",
"\n",
"This notebook combines two concepts in order to build a custom agent that can interact with AI Plugins:\n",
"\n",
"1. [Custom Agent with Tool Retrieval](/docs/modules/agents/how_to/custom_agent_with_tool_retrieval.html): This introduces the concept of retrieving many tools, which is useful when trying to work with arbitrarily many plugins.\n",
"2. [Natural Language API Chains](/docs/use_cases/apis/openapi.html): This creates Natural Language wrappers around OpenAPI endpoints. This is useful because (1) plugins use OpenAPI endpoints under the hood, (2) wrapping them in an NLAChain allows the router agent to call it more easily.\n",
"\n",
"The novel idea introduced in this notebook is the idea of using retrieval to select not the tools explicitly, but the set of OpenAPI specs to use. We can then generate tools from those OpenAPI specs. The use case for this is when trying to get agents to use plugins. It may be more efficient to choose plugins first, then the endpoints, rather than the endpoints directly. This is because the plugins may contain more useful information for selection."
]
},
{
"cell_type": "markdown",
"id": "fea4812c",
"metadata": {},
"source": [
"## Set up environment\n",
"\n",
"Do necessary imports, etc."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9af9734e",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "2f91d8b4",
"metadata": {},
"source": [
"## Setup LLM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a1a3b59c",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "6df0253f",
"metadata": {},
"source": [
"## Set up plugins\n",
"\n",
"Load and index plugins"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "becda2a1",
"metadata": {},
"outputs": [],
"source": [
"urls = [\n",
" \"https://datasette.io/.well-known/ai-plugin.json\",\n",
" \"https://api.speak.com/.well-known/ai-plugin.json\",\n",
" \"https://www.wolframalpha.com/.well-known/ai-plugin.json\",\n",
" \"https://www.zapier.com/.well-known/ai-plugin.json\",\n",
" \"https://www.klarna.com/.well-known/ai-plugin.json\",\n",
" \"https://www.joinmilo.com/.well-known/ai-plugin.json\",\n",
" \"https://slack.com/.well-known/ai-plugin.json\",\n",
" \"https://schooldigger.com/.well-known/ai-plugin.json\",\n",
"]\n",
"\n",
"AI_PLUGINS = [AIPlugin.from_url(url) for url in urls]"
]
},
{
"cell_type": "markdown",
"id": "17362717",
"metadata": {},
"source": [
"## Tool Retriever\n",
"\n",
"We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "77c4be4b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9092a158",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
]
}
],
"source": [
"embeddings = OpenAIEmbeddings()\n",
"docs = [\n",
" Document(\n",
" page_content=plugin.description_for_model,\n",
" metadata={\"plugin_name\": plugin.name_for_model},\n",
" )\n",
" for plugin in AI_PLUGINS\n",
"]\n",
"vector_store = FAISS.from_documents(docs, embeddings)\n",
"toolkits_dict = {\n",
" plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)\n",
" for plugin in AI_PLUGINS\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "735a7566",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever()\n",
"\n",
"\n",
"def get_tools(query):\n",
" # Get documents, which contain the Plugins to use\n",
" docs = retriever.invoke(query)\n",
" # Get the toolkits, one for each plugin\n",
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
" # Get the tools: a separate NLAChain for each endpoint\n",
" tools = []\n",
" for tk in tool_kits:\n",
" tools.extend(tk.nla_tools)\n",
" return tools"
]
},
{
"cell_type": "markdown",
"id": "7699afd7",
"metadata": {},
"source": [
"We can now test this retriever to see if it seems to work."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "425f2886",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20',\n",
" 'Speak.translate',\n",
" 'Speak.explainPhrase',\n",
" 'Speak.explainTask']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"What could I do today with my kiddo\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3aa88768",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Open_AI_Klarna_product_Api.productsUsingGET',\n",
" 'Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20']"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"what shirts can i buy?\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "markdown",
"id": "2e7a075c",
"metadata": {},
"source": [
"## Prompt Template\n",
"\n",
"The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "339b1bb8",
"metadata": {},
"outputs": [],
"source": [
"# Set up the base template\n",
"template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
"\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\""
]
},
{
"cell_type": "markdown",
"id": "1583acdc",
"metadata": {},
"source": [
"The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fd969d31",
"metadata": {},
"outputs": [],
"source": [
"from typing import Callable\n",
"\n",
"\n",
"# Set up a prompt template\n",
"class CustomPromptTemplate(StringPromptTemplate):\n",
" # The template to use\n",
" template: str\n",
" ############## NEW ######################\n",
" # The list of tools available\n",
" tools_getter: Callable\n",
"\n",
" def format(self, **kwargs) -> str:\n",
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
" # Format them in a particular way\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" thoughts = \"\"\n",
" for action, observation in intermediate_steps:\n",
" thoughts += action.log\n",
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
" # Set the agent_scratchpad variable to that value\n",
" kwargs[\"agent_scratchpad\"] = thoughts\n",
" ############## NEW ######################\n",
" tools = self.tools_getter(kwargs[\"input\"])\n",
" # Create a tools variable from the list of tools provided\n",
" kwargs[\"tools\"] = \"\\n\".join(\n",
" [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
" )\n",
" # Create a list of tool names for the tools provided\n",
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
" return self.template.format(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "798ef9fb",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(\n",
" template=template,\n",
" tools_getter=get_tools,\n",
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
" # This includes the `intermediate_steps` variable because that is needed\n",
" input_variables=[\"input\", \"intermediate_steps\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ef3a1af3",
"metadata": {},
"source": [
"## Output Parser\n",
"\n",
"The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7c6fe0d3",
"metadata": {},
"outputs": [],
"source": [
"class CustomOutputParser(AgentOutputParser):\n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" # Check if agent should finish\n",
" if \"Final Answer:\" in llm_output:\n",
" return AgentFinish(\n",
" # Return values is generally always a dictionary with a single `output` key\n",
" # It is not recommended to try anything else at the moment :)\n",
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
" log=llm_output,\n",
" )\n",
" # Parse out the action and action input\n",
" regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
" match = re.search(regex, llm_output, re.DOTALL)\n",
" if not match:\n",
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
" action = match.group(1).strip()\n",
" action_input = match.group(2)\n",
" # Return the action and action input\n",
" return AgentAction(\n",
" tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d278706a",
"metadata": {},
"outputs": [],
"source": [
"output_parser = CustomOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "170587b1",
"metadata": {},
"source": [
"## Set up LLM, stop sequence, and the agent\n",
"\n",
"Also the same as the previous notebook"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f9d4c374",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9b1cc2a2",
"metadata": {},
"outputs": [],
"source": [
"# LLM chain consisting of the LLM and a prompt\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e4f5092f",
"metadata": {},
"outputs": [],
"source": [
"tool_names = [tool.name for tool in tools]\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
" output_parser=output_parser,\n",
" stop=[\"\\nObservation:\"],\n",
" allowed_tools=tool_names,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "aa8a5326",
"metadata": {},
"source": [
"## Use the Agent\n",
"\n",
"Now we can use it!"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "490604e9",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "653b1617",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find a product API\n",
"Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
"Action Input: shirts\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mI found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\u001b[32;1m\u001b[1;3m I now know what shirts I can buy\n",
"Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"what shirts can i buy?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2481ee76",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|