File size: 41,970 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Groq Chat wrapper."""

from __future__ import annotations

import json
import os
import warnings
from operator import itemgetter
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    TypedDict,
    Union,
    cast,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    LangSmithParams,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    InvalidToolCall,
    SystemMessage,
    SystemMessageChunk,
    ToolCall,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.output_parsers import (
    JsonOutputParser,
    PydanticOutputParser,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
    make_invalid_tool_call,
    parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
    get_pydantic_field_names,
)
from langchain_core.utils.function_calling import (
    convert_to_openai_function,
    convert_to_openai_tool,
)


class ChatGroq(BaseChatModel):
    """`Groq` Chat large language models API.

    To use, you should have the
    environment variable ``GROQ_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the groq.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain_groq import ChatGroq

            model = ChatGroq(model_name="mixtral-8x7b-32768")
    """

    client: Any = Field(default=None, exclude=True)  #: :meta private:
    async_client: Any = Field(default=None, exclude=True)  #: :meta private:
    model_name: str = Field(default="mixtral-8x7b-32768", alias="model")
    """Model name to use."""
    temperature: float = 0.7
    """What sampling temperature to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    groq_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `groq_API_KEY` if not provided."""
    groq_api_base: Optional[str] = Field(default=None, alias="base_url")
    """Base URL path for API requests, leave blank if not using a proxy or service
        emulator."""
    # to support explicit proxy for Groq
    groq_proxy: Optional[str] = None
    request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
        default=None, alias="timeout"
    )
    """Timeout for requests to Groq completion API. Can be float, httpx.Timeout or
        None."""
    max_retries: int = 2
    """Maximum number of retries to make when generating."""
    streaming: bool = False
    """Whether to stream the results or not."""
    n: int = 1
    """Number of chat completions to generate for each prompt."""
    max_tokens: Optional[int] = None
    """Maximum number of tokens to generate."""
    stop: Optional[List[str]] = Field(None, alias="stop_sequences")
    """Default stop sequences."""
    default_headers: Union[Mapping[str, str], None] = None
    default_query: Union[Mapping[str, object], None] = None
    # Configure a custom httpx client. See the
    # [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
    http_client: Union[Any, None] = None
    """Optional httpx.Client."""
    http_async_client: Union[Any, None] = None
    """Optional httpx.AsyncClient. Only used for async invocations. Must specify
        http_client as well if you'd like a custom client for sync invocations."""

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                warnings.warn(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        if values["n"] < 1:
            raise ValueError("n must be at least 1.")
        if values["n"] > 1 and values["streaming"]:
            raise ValueError("n must be 1 when streaming.")

        if values["temperature"] == 0:
            values["temperature"] = 1e-8

        values["groq_api_key"] = convert_to_secret_str(
            get_from_dict_or_env(values, "groq_api_key", "GROQ_API_KEY")
        )
        values["groq_api_base"] = values["groq_api_base"] or os.getenv("GROQ_API_BASE")
        values["groq_proxy"] = values["groq_proxy"] = os.getenv("GROQ_PROXY")

        client_params = {
            "api_key": values["groq_api_key"].get_secret_value(),
            "base_url": values["groq_api_base"],
            "timeout": values["request_timeout"],
            "max_retries": values["max_retries"],
            "default_headers": values["default_headers"],
            "default_query": values["default_query"],
        }

        try:
            import groq

            sync_specific = {"http_client": values["http_client"]}
            if not values.get("client"):
                values["client"] = groq.Groq(
                    **client_params, **sync_specific
                ).chat.completions
            if not values.get("async_client"):
                async_specific = {"http_client": values["http_async_client"]}
                values["async_client"] = groq.AsyncGroq(
                    **client_params, **async_specific
                ).chat.completions
        except ImportError:
            raise ImportError(
                "Could not import groq python package. "
                "Please install it with `pip install groq`."
            )
        return values

    #
    # Serializable class method overrides
    #
    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"groq_api_key": "GROQ_API_KEY"}

    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return True

    #
    # BaseChatModel method overrides
    #
    @property
    def _llm_type(self) -> str:
        """Return type of model."""
        return "groq-chat"

    def _get_ls_params(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> LangSmithParams:
        """Get standard params for tracing."""
        params = self._get_invocation_params(stop=stop, **kwargs)
        ls_params = LangSmithParams(
            ls_provider="groq",
            ls_model_name=self.model_name,
            ls_model_type="chat",
            ls_temperature=params.get("temperature", self.temperature),
        )
        if ls_max_tokens := params.get("max_tokens", self.max_tokens):
            ls_params["ls_max_tokens"] = ls_max_tokens
        if ls_stop := stop or params.get("stop", None) or self.stop:
            ls_params["ls_stop"] = ls_stop
        return ls_params

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **kwargs,
        }
        response = self.client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **kwargs,
        }
        response = await self.async_client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)

        # groq api does not support streaming with tools yet
        if "tools" in kwargs:
            response = self.client.create(
                messages=message_dicts, **{**params, **kwargs}
            )
            chat_result = self._create_chat_result(response)
            generation = chat_result.generations[0]
            message = generation.message
            tool_call_chunks = [
                {
                    "name": rtc["function"].get("name"),
                    "args": rtc["function"].get("arguments"),
                    "id": rtc.get("id"),
                    "index": rtc.get("index"),
                }
                for rtc in message.additional_kwargs.get("tool_calls", [])
            ]
            chunk_ = ChatGenerationChunk(
                message=AIMessageChunk(
                    content=message.content,
                    additional_kwargs=message.additional_kwargs,
                    tool_call_chunks=tool_call_chunks,
                ),
                generation_info=generation.generation_info,
            )
            if run_manager:
                geninfo = chunk_.generation_info or {}
                run_manager.on_llm_new_token(
                    chunk_.text,
                    chunk=chunk_,
                    logprobs=geninfo.get("logprobs"),
                )
            yield chunk_
            return

        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        for chunk in self.client.create(messages=message_dicts, **params):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            chunk = _convert_delta_to_message_chunk(
                choice["delta"], default_chunk_class
            )
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(
                message=chunk, generation_info=generation_info or None
            )

            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
            yield chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)

        # groq api does not support streaming with tools yet
        if "tools" in kwargs:
            response = await self.async_client.create(
                messages=message_dicts, **{**params, **kwargs}
            )
            chat_result = self._create_chat_result(response)
            generation = chat_result.generations[0]
            message = generation.message
            tool_call_chunks = [
                {
                    "name": rtc["function"].get("name"),
                    "args": rtc["function"].get("arguments"),
                    "id": rtc.get("id"),
                    "index": rtc.get("index"),
                }
                for rtc in message.additional_kwargs.get("tool_calls", [])
            ]
            chunk_ = ChatGenerationChunk(
                message=AIMessageChunk(
                    content=message.content,
                    additional_kwargs=message.additional_kwargs,
                    tool_call_chunks=tool_call_chunks,
                ),
                generation_info=generation.generation_info,
            )
            if run_manager:
                geninfo = chunk_.generation_info or {}
                await run_manager.on_llm_new_token(
                    chunk_.text,
                    chunk=chunk_,
                    logprobs=geninfo.get("logprobs"),
                )
            yield chunk_
            return

        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        async for chunk in await self.async_client.create(
            messages=message_dicts, **params
        ):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            chunk = _convert_delta_to_message_chunk(
                choice["delta"], default_chunk_class
            )
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(
                message=chunk, generation_info=generation_info or None
            )

            if run_manager:
                await run_manager.on_llm_new_token(
                    token=chunk.text, chunk=chunk, logprobs=logprobs
                )
            yield chunk

    #
    # Internal methods
    #
    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Groq API."""
        params = {
            "model": self.model_name,
            "stream": self.streaming,
            "n": self.n,
            "temperature": self.temperature,
            "stop": self.stop,
            **self.model_kwargs,
        }
        if self.max_tokens is not None:
            params["max_tokens"] = self.max_tokens
        return params

    def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
        generations = []
        if not isinstance(response, dict):
            response = response.dict()
        for res in response["choices"]:
            message = _convert_dict_to_message(res["message"])
            generation_info = dict(finish_reason=res.get("finish_reason"))
            if "logprobs" in res:
                generation_info["logprobs"] = res["logprobs"]
            gen = ChatGeneration(
                message=message,
                generation_info=generation_info,
            )
            generations.append(gen)
        token_usage = response.get("usage", {})
        llm_output = {
            "token_usage": token_usage,
            "model_name": self.model_name,
            "system_fingerprint": response.get("system_fingerprint", ""),
        }
        return ChatResult(generations=generations, llm_output=llm_output)

    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._default_params
        if stop is not None:
            params["stop"] = stop
        message_dicts = [_convert_message_to_dict(m) for m in messages]
        return message_dicts, params

    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        overall_token_usage: dict = {}
        system_fingerprint = None
        for output in llm_outputs:
            if output is None:
                # Happens in streaming
                continue
            token_usage = output["token_usage"]
            if token_usage is not None:
                for k, v in token_usage.items():
                    if k in overall_token_usage and v is not None:
                        overall_token_usage[k] += v
                    else:
                        overall_token_usage[k] = v
            if system_fingerprint is None:
                system_fingerprint = output.get("system_fingerprint")
        combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
        if system_fingerprint:
            combined["system_fingerprint"] = system_fingerprint
        return combined

    def bind_functions(
        self,
        functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        function_call: Optional[
            Union[_FunctionCall, str, Literal["auto", "none"]]
        ] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind functions (and other objects) to this chat model.

        Model is compatible with OpenAI function-calling API.

        NOTE: Using bind_tools is recommended instead, as the `functions` and
            `function_call` request parameters are officially deprecated.

        Args:
            functions: A list of function definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, or callable. Pydantic
                models and callables will be automatically converted to
                their schema dictionary representation.
            function_call: Which function to require the model to call.
                Must be the name of the single provided function or
                "auto" to automatically determine which function to call
                (if any).
            **kwargs: Any additional parameters to pass to the
                :class:`~langchain.runnable.Runnable` constructor.
        """

        formatted_functions = [convert_to_openai_function(fn) for fn in functions]
        if function_call is not None:
            function_call = (
                {"name": function_call}
                if isinstance(function_call, str)
                and function_call not in ("auto", "none")
                else function_call
            )
            if isinstance(function_call, dict) and len(formatted_functions) != 1:
                raise ValueError(
                    "When specifying `function_call`, you must provide exactly one "
                    "function."
                )
            if (
                isinstance(function_call, dict)
                and formatted_functions[0]["name"] != function_call["name"]
            ):
                raise ValueError(
                    f"Function call {function_call} was specified, but the only "
                    f"provided function was {formatted_functions[0]['name']}."
                )
            kwargs = {**kwargs, "function_call": function_call}
        return super().bind(
            functions=formatted_functions,
            **kwargs,
        )

    def bind_tools(
        self,
        tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        *,
        tool_choice: Optional[
            Union[dict, str, Literal["auto", "any", "none"], bool]
        ] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind tool-like objects to this chat model.

        Args:
            tools: A list of tool definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, callable, or BaseTool. Pydantic
                models, callables, and BaseTools will be automatically converted to
                their schema dictionary representation.
            tool_choice: Which tool to require the model to call.
                Must be the name of the single provided function,
                "auto" to automatically determine which function to call
                with the option to not call any function, "any" to enforce that some
                function is called, or a dict of the form:
                {"type": "function", "function": {"name": <<tool_name>>}}.
            **kwargs: Any additional parameters to pass to the
                :class:`~langchain.runnable.Runnable` constructor.
        """

        formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
        if tool_choice is not None and tool_choice:
            if isinstance(tool_choice, str) and (
                tool_choice not in ("auto", "any", "none")
            ):
                tool_choice = {"type": "function", "function": {"name": tool_choice}}
            if isinstance(tool_choice, dict) and (len(formatted_tools) != 1):
                raise ValueError(
                    "When specifying `tool_choice`, you must provide exactly one "
                    f"tool. Received {len(formatted_tools)} tools."
                )
            if isinstance(tool_choice, dict) and (
                formatted_tools[0]["function"]["name"]
                != tool_choice["function"]["name"]
            ):
                raise ValueError(
                    f"Tool choice {tool_choice} was specified, but the only "
                    f"provided tool was {formatted_tools[0]['function']['name']}."
                )
            if isinstance(tool_choice, bool):
                if len(tools) > 1:
                    raise ValueError(
                        "tool_choice can only be True when there is one tool. Received "
                        f"{len(tools)} tools."
                    )
                tool_name = formatted_tools[0]["function"]["name"]
                tool_choice = {
                    "type": "function",
                    "function": {"name": tool_name},
                }

            kwargs["tool_choice"] = tool_choice
        return super().bind(tools=formatted_tools, **kwargs)

    def with_structured_output(
        self,
        schema: Optional[Union[Dict, Type[BaseModel]]] = None,
        *,
        method: Literal["function_calling", "json_mode"] = "function_calling",
        include_raw: bool = False,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
        """Model wrapper that returns outputs formatted to match the given schema.

        Args:
            schema: The output schema as a dict or a Pydantic class. If a Pydantic class
                then the model output will be an object of that class. If a dict then
                the model output will be a dict. With a Pydantic class the returned
                attributes will be validated, whereas with a dict they will not be. If
                `method` is "function_calling" and `schema` is a dict, then the dict
                must match the OpenAI function-calling spec.
            method: The method for steering model generation, either "function_calling"
                or "json_mode". If "function_calling" then the schema will be converted
                to a OpenAI function and the returned model will make use of the
                function-calling API. If "json_mode" then Groq's JSON mode will be
                used. Note that if using "json_mode" then you must include instructions
                for formatting the output into the desired schema into the model call.
            include_raw: If False then only the parsed structured output is returned. If
                an error occurs during model output parsing it will be raised. If True
                then both the raw model response (a BaseMessage) and the parsed model
                response will be returned. If an error occurs during output parsing it
                will be caught and returned as well. The final output is always a dict
                with keys "raw", "parsed", and "parsing_error".

        Returns:
            A Runnable that takes any ChatModel input and returns as output:

                If include_raw is True then a dict with keys:
                    raw: BaseMessage
                    parsed: Optional[_DictOrPydantic]
                    parsing_error: Optional[BaseException]

                If include_raw is False then just _DictOrPydantic is returned,
                where _DictOrPydantic depends on the schema:

                If schema is a Pydantic class then _DictOrPydantic is the Pydantic
                    class.

                If schema is a dict then _DictOrPydantic is a dict.

        Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
            .. code-block:: python

                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel

                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str

                llm = ChatGroq(temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
                # -> AnswerWithJustification(
                #     answer='A pound of bricks and a pound of feathers weigh the same.'
                #     justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."
                # )

        Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
            .. code-block:: python

                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel

                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str

                llm = ChatGroq(temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
                # -> {
                #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'),
                #     'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."),
                #     'parsing_error': None
                # }

        Example: Function-calling, dict schema (method="function_calling", include_raw=False):
            .. code-block:: python

                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel
                from langchain_core.utils.function_calling import convert_to_openai_tool

                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str

                dict_schema = convert_to_openai_tool(AnswerWithJustification)
                llm = ChatGroq(temperature=0)
                structured_llm = llm.with_structured_output(dict_schema)

                structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
                # -> {
                #     'answer': 'A pound of bricks and a pound of feathers weigh the same.',
                #     'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'}
                # }

        Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
            .. code-block::

                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel

                class AnswerWithJustification(BaseModel):
                    answer: str
                    justification: str

                llm = ChatGroq(temperature=0)
                structured_llm = llm.with_structured_output(
                    AnswerWithJustification,
                    method="json_mode",
                    include_raw=True
                )

                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{\n  "answer": "A pound of bricks is the same weight as a pound of feathers.",\n  "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed."\n}', id='run-e5453bc5-5025-4833-95f9-4967bf6d5c4f-0'),
                #     'parsed': AnswerWithJustification(answer='A pound of bricks is the same weight as a pound of feathers.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The material being weighed does not affect the weight, only the volume or number of items being weighed.'),
                #     'parsing_error': None
                # }

        Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
            .. code-block::

                from langchain_groq import ChatGroq

                llm = ChatGroq(temperature=0)
                structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)

                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{\n  "answer": "A pound of bricks is the same weight as a pound of feathers.",\n  "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn\'t change the weight, only the volume or space that the material takes up."\n}', id='run-a4abbdb6-c20e-456f-bfff-da906a7e76b5-0'),
                #     'parsed': {
                #         'answer': 'A pound of bricks is the same weight as a pound of feathers.',
                #         'justification': "Both a pound of bricks and a pound of feathers weigh one pound. The material doesn't change the weight, only the volume or space that the material takes up."},
                #     'parsing_error': None
                # }


        """  # noqa: E501
        if kwargs:
            raise ValueError(f"Received unsupported arguments {kwargs}")
        is_pydantic_schema = _is_pydantic_class(schema)
        if method == "function_calling":
            if schema is None:
                raise ValueError(
                    "schema must be specified when method is 'function_calling'. "
                    "Received None."
                )
            llm = self.bind_tools([schema], tool_choice=True)
            if is_pydantic_schema:
                output_parser: OutputParserLike = PydanticToolsParser(
                    tools=[schema], first_tool_only=True
                )
            else:
                key_name = convert_to_openai_tool(schema)["function"]["name"]
                output_parser = JsonOutputKeyToolsParser(
                    key_name=key_name, first_tool_only=True
                )
        elif method == "json_mode":
            llm = self.bind(response_format={"type": "json_object"})
            output_parser = (
                PydanticOutputParser(pydantic_object=schema)
                if is_pydantic_schema
                else JsonOutputParser()
            )
        else:
            raise ValueError(
                f"Unrecognized method argument. Expected one of 'function_calling' or "
                f"'json_format'. Received: '{method}'"
            )

        if include_raw:
            parser_assign = RunnablePassthrough.assign(
                parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
            )
            parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
            parser_with_fallback = parser_assign.with_fallbacks(
                [parser_none], exception_key="parsing_error"
            )
            return RunnableMap(raw=llm) | parser_with_fallback
        else:
            return llm | output_parser


def _is_pydantic_class(obj: Any) -> bool:
    return isinstance(obj, type) and issubclass(obj, BaseModel)


class _FunctionCall(TypedDict):
    name: str


#
# Type conversion helpers
#
def _convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a LangChain message to a dictionary.

    Args:
        message: The LangChain message.

    Returns:
        The dictionary.
    """
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
        if message.tool_calls or message.invalid_tool_calls:
            message_dict["tool_calls"] = [
                _lc_tool_call_to_groq_tool_call(tc) for tc in message.tool_calls
            ] + [
                _lc_invalid_tool_call_to_groq_tool_call(tc)
                for tc in message.invalid_tool_calls
            ]
        elif "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
            # If tool calls only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "content": message.content,
            "tool_call_id": message.tool_call_id,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = cast(str, _dict.get("role"))
    content = cast(str, _dict.get("content") or "")
    additional_kwargs: Dict = {}
    if _dict.get("function_call"):
        function_call = dict(_dict["function_call"])
        if "name" in function_call and function_call["name"] is None:
            function_call["name"] = ""
        additional_kwargs["function_call"] = function_call
    if _dict.get("tool_calls"):
        additional_kwargs["tool_calls"] = _dict["tool_calls"]

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role == "tool" or default_class == ToolMessageChunk:
        return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)  # type: ignore


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    """Convert a dictionary to a LangChain message.

    Args:
        _dict: The dictionary.

    Returns:
        The LangChain message.
    """
    id_ = _dict.get("id")
    role = _dict.get("role")
    if role == "user":
        return HumanMessage(content=_dict.get("content", ""))
    elif role == "assistant":
        content = _dict.get("content", "") or ""
        additional_kwargs: Dict = {}
        if function_call := _dict.get("function_call"):
            additional_kwargs["function_call"] = dict(function_call)
        tool_calls = []
        invalid_tool_calls = []
        if raw_tool_calls := _dict.get("tool_calls"):
            additional_kwargs["tool_calls"] = raw_tool_calls
            for raw_tool_call in raw_tool_calls:
                try:
                    tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
                except Exception as e:
                    invalid_tool_calls.append(
                        make_invalid_tool_call(raw_tool_call, str(e))
                    )
        return AIMessage(
            content=content,
            id=id_,
            additional_kwargs=additional_kwargs,
            tool_calls=tool_calls,
            invalid_tool_calls=invalid_tool_calls,
        )
    elif role == "system":
        return SystemMessage(content=_dict.get("content", ""))
    elif role == "function":
        return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name"))
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return ToolMessage(
            content=_dict.get("content", ""),
            tool_call_id=_dict.get("tool_call_id"),
            additional_kwargs=additional_kwargs,
        )
    else:
        return ChatMessage(content=_dict.get("content", ""), role=role)


def _lc_tool_call_to_groq_tool_call(tool_call: ToolCall) -> dict:
    return {
        "type": "function",
        "id": tool_call["id"],
        "function": {
            "name": tool_call["name"],
            "arguments": json.dumps(tool_call["args"]),
        },
    }


def _lc_invalid_tool_call_to_groq_tool_call(
    invalid_tool_call: InvalidToolCall,
) -> dict:
    return {
        "type": "function",
        "id": invalid_tool_call["id"],
        "function": {
            "name": invalid_tool_call["name"],
            "arguments": invalid_tool_call["args"],
        },
    }