File size: 2,137 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

# rag-codellama-fireworks

This template performs RAG on a codebase. 
 
It uses codellama-34b hosted by Fireworks' [LLM inference API](https://blog.fireworks.ai/accelerating-code-completion-with-fireworks-fast-llm-inference-f4e8b5ec534a).

## Environment Setup

Set the `FIREWORKS_API_KEY` environment variable to access the Fireworks models.

You can obtain it from [here](https://app.fireworks.ai/login?callbackURL=https://app.fireworks.ai).

## Usage

To use this package, you should first have the LangChain CLI installed:

```shell
pip install -U langchain-cli
```

To create a new LangChain project and install this as the only package, you can do:

```shell
langchain app new my-app --package rag-codellama-fireworks
```

If you want to add this to an existing project, you can just run:

```shell
langchain app add rag-codellama-fireworks
```

And add the following code to your `server.py` file:
```python
from rag_codellama_fireworks import chain as rag_codellama_fireworks_chain

add_routes(app, rag_codellama_fireworks_chain, path="/rag-codellama-fireworks")
```

(Optional) Let's now configure LangSmith. 
LangSmith will help us trace, monitor and debug LangChain applications. 
You can sign up for LangSmith [here](https://smith.langchain.com/). 
If you don't have access, you can skip this section

```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # if not specified, defaults to "default"
```

If you are inside this directory, then you can spin up a LangServe instance directly by:

```shell
langchain serve
```

This will start the FastAPI app with a server is running locally at 
[http://localhost:8000](http://localhost:8000)

We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-codellama-fireworks/playground](http://127.0.0.1:8000/rag-codellama-fireworks/playground)  

We can access the template from code with:

```python
from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-codellama-fireworks")
```