File size: 7,865 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ccb74c9b",
   "metadata": {},
   "source": [
    "# Improve document indexing with HyDE\n",
    "This notebook goes over how to use Hypothetical Document Embeddings (HyDE), as described in [this paper](https://arxiv.org/abs/2212.10496). \n",
    "\n",
    "At a high level, HyDE is an embedding technique that takes queries, generates a hypothetical answer, and then embeds that generated document and uses that as the final example. \n",
    "\n",
    "In order to use HyDE, we therefore need to provide a base embedding model, as well as an LLMChain that can be used to generate those documents. By default, the HyDE class comes with some default prompts to use (see the paper for more details on them), but we can also create our own."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "546e87ee",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain_openai import OpenAI, OpenAIEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c0ea895f",
   "metadata": {},
   "outputs": [],
   "source": [
    "base_embeddings = OpenAIEmbeddings()\n",
    "llm = OpenAI()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "33bd6905",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "50729989",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load with `web_search` prompt\n",
    "embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, \"web_search\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3aa573d6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Now we can use it as any embedding class!\n",
    "result = embeddings.embed_query(\"Where is the Taj Mahal?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c7a0b556",
   "metadata": {},
   "source": [
    "## Multiple generations\n",
    "We can also generate multiple documents and then combine the embeddings for those. By default, we combine those by taking the average. We can do this by changing the LLM we use to generate documents to return multiple things."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "05da7060",
   "metadata": {},
   "outputs": [],
   "source": [
    "multi_llm = OpenAI(n=4, best_of=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "9b1e12bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = HypotheticalDocumentEmbedder.from_llm(\n",
    "    multi_llm, base_embeddings, \"web_search\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a60cd343",
   "metadata": {},
   "outputs": [],
   "source": [
    "result = embeddings.embed_query(\"Where is the Taj Mahal?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1da90437",
   "metadata": {},
   "source": [
    "## Using our own prompts\n",
    "Besides using preconfigured prompts, we can also easily construct our own prompts and use those in the LLMChain that is generating the documents. This can be useful if we know the domain our queries will be in, as we can condition the prompt to generate text more similar to that.\n",
    "\n",
    "In the example below, let's condition it to generate text about a state of the union address (because we will use that in the next example)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "0b4a650f",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt_template = \"\"\"Please answer the user's question about the most recent state of the union address\n",
    "Question: {question}\n",
    "Answer:\"\"\"\n",
    "prompt = PromptTemplate(input_variables=[\"question\"], template=prompt_template)\n",
    "llm_chain = LLMChain(llm=llm, prompt=prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "7f7e2b86",
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = HypotheticalDocumentEmbedder(\n",
    "    llm_chain=llm_chain, base_embeddings=base_embeddings\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "6dd83424",
   "metadata": {},
   "outputs": [],
   "source": [
    "result = embeddings.embed_query(\n",
    "    \"What did the president say about Ketanji Brown Jackson\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "31388123",
   "metadata": {},
   "source": [
    "## Using HyDE\n",
    "Now that we have HyDE, we can use it as we would any other embedding class! Here is using it to find similar passages in the state of the union example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "97719b29",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.vectorstores import Chroma\n",
    "from langchain_text_splitters import CharacterTextSplitter\n",
    "\n",
    "with open(\"../../state_of_the_union.txt\") as f:\n",
    "    state_of_the_union = f.read()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "texts = text_splitter.split_text(state_of_the_union)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "bfcfc039",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running Chroma using direct local API.\n",
      "Using DuckDB in-memory for database. Data will be transient.\n"
     ]
    }
   ],
   "source": [
    "docsearch = Chroma.from_texts(texts, embeddings)\n",
    "\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = docsearch.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "632af7f2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
      "\n",
      "We cannot let this happen. \n",
      "\n",
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b9e57b93",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  },
  "vscode": {
   "interpreter": {
    "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}