File size: 54,413 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f1571abe-8e84-44d1-b222-e4121fdbb4be",
   "metadata": {},
   "source": [
    "# Advanced RAG Eval\n",
    "\n",
    "The cookbook walks through the process of running eval(s) on advanced RAG. \n",
    "\n",
    "This can be very useful to determine the best RAG approach for your application."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d8415ee-709c-407f-9ac2-f03a9d697aaf",
   "metadata": {},
   "outputs": [],
   "source": [
    "! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "191f8465-fd6b-4017-8f0e-d284971b45ae",
   "metadata": {},
   "outputs": [],
   "source": [
    "# lock to 0.10.19 due to a persistent bug in more recent versions\n",
    "! pip install \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "45949db5-d9b6-44a9-85f8-96d83a288616",
   "metadata": {},
   "source": [
    "## Data Loading\n",
    "\n",
    "Let's look at an [example whitepaper](https://sgp.fas.org/crs/misc/IF10244.pdf) that provides a mixture of tables, text, and images about Wildfires in the US."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "961a42b9-c16b-472e-b994-3c3f73afbbcb",
   "metadata": {},
   "source": [
    "### Option 1: Load text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "12f24fc0-c176-4201-982b-8a84b278ff1b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Path\n",
    "path = \"/Users/rlm/Desktop/cpi/\"\n",
    "\n",
    "# Load\n",
    "from langchain_community.document_loaders import PyPDFLoader\n",
    "\n",
    "loader = PyPDFLoader(path + \"cpi.pdf\")\n",
    "pdf_pages = loader.load()\n",
    "\n",
    "# Split\n",
    "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
    "\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
    "all_splits_pypdf = text_splitter.split_documents(pdf_pages)\n",
    "all_splits_pypdf_texts = [d.page_content for d in all_splits_pypdf]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "92fc1870-1836-4bc3-945a-78e2c16ad823",
   "metadata": {},
   "source": [
    "### Option 2: Load text, tables, images \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "7d863632-f894-4471-b4cc-a1d9aa834d29",
   "metadata": {},
   "outputs": [],
   "source": [
    "from unstructured.partition.pdf import partition_pdf\n",
    "\n",
    "# Extract images, tables, and chunk text\n",
    "raw_pdf_elements = partition_pdf(\n",
    "    filename=path + \"cpi.pdf\",\n",
    "    extract_images_in_pdf=True,\n",
    "    infer_table_structure=True,\n",
    "    chunking_strategy=\"by_title\",\n",
    "    max_characters=4000,\n",
    "    new_after_n_chars=3800,\n",
    "    combine_text_under_n_chars=2000,\n",
    "    image_output_dir_path=path,\n",
    ")\n",
    "\n",
    "# Categorize by type\n",
    "tables = []\n",
    "texts = []\n",
    "for element in raw_pdf_elements:\n",
    "    if \"unstructured.documents.elements.Table\" in str(type(element)):\n",
    "        tables.append(str(element))\n",
    "    elif \"unstructured.documents.elements.CompositeElement\" in str(type(element)):\n",
    "        texts.append(str(element))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65f399c5-bd91-4ed4-89c6-c89d2e17466e",
   "metadata": {},
   "source": [
    "## Store\n",
    "\n",
    "### Option 1: Embed, store text chunks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7d7ecdb2-0bb5-46b8-bcff-af8fc272e88e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.vectorstores import Chroma\n",
    "from langchain_openai import OpenAIEmbeddings\n",
    "\n",
    "baseline = Chroma.from_texts(\n",
    "    texts=all_splits_pypdf_texts,\n",
    "    collection_name=\"baseline\",\n",
    "    embedding=OpenAIEmbeddings(),\n",
    ")\n",
    "retriever_baseline = baseline.as_retriever()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a0eaefe-5e4b-4853-94c7-5abd6f7fbeac",
   "metadata": {},
   "source": [
    "### Option 2: Multi-vector retriever\n",
    "\n",
    "#### Text Summary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3d4b4b43-e96e-48ab-899d-c39d0430562e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "# Prompt\n",
    "prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",
    "These summaries will be embedded and used to retrieve the raw text or table elements. \\\n",
    "Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} \"\"\"\n",
    "prompt = ChatPromptTemplate.from_template(prompt_text)\n",
    "\n",
    "# Text summary chain\n",
    "model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
    "summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
    "\n",
    "# Apply to text\n",
    "text_summaries = summarize_chain.batch(texts, {\"max_concurrency\": 5})\n",
    "\n",
    "# Apply to tables\n",
    "table_summaries = summarize_chain.batch(tables, {\"max_concurrency\": 5})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bdb5c903-5b4c-4ddb-8f9a-e20f5155dfb9",
   "metadata": {},
   "source": [
    "#### Image Summary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "4570578c-531b-422c-bedd-cc519d9b7887",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Image summary chain\n",
    "import base64\n",
    "import io\n",
    "import os\n",
    "from io import BytesIO\n",
    "\n",
    "from langchain_core.messages import HumanMessage\n",
    "from PIL import Image\n",
    "\n",
    "\n",
    "def encode_image(image_path):\n",
    "    \"\"\"Getting the base64 string\"\"\"\n",
    "    with open(image_path, \"rb\") as image_file:\n",
    "        return base64.b64encode(image_file.read()).decode(\"utf-8\")\n",
    "\n",
    "\n",
    "def image_summarize(img_base64, prompt):\n",
    "    \"\"\"Image summary\"\"\"\n",
    "    chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=1024)\n",
    "\n",
    "    msg = chat.invoke(\n",
    "        [\n",
    "            HumanMessage(\n",
    "                content=[\n",
    "                    {\"type\": \"text\", \"text\": prompt},\n",
    "                    {\n",
    "                        \"type\": \"image_url\",\n",
    "                        \"image_url\": {\"url\": f\"data:image/jpeg;base64,{img_base64}\"},\n",
    "                    },\n",
    "                ]\n",
    "            )\n",
    "        ]\n",
    "    )\n",
    "    return msg.content\n",
    "\n",
    "\n",
    "# Store base64 encoded images\n",
    "img_base64_list = []\n",
    "\n",
    "# Store image summaries\n",
    "image_summaries = []\n",
    "\n",
    "# Prompt\n",
    "prompt = \"\"\"You are an assistant tasked with summarizing images for retrieval. \\\n",
    "These summaries will be embedded and used to retrieve the raw image. \\\n",
    "Give a concise summary of the image that is well optimized for retrieval.\"\"\"\n",
    "\n",
    "# Apply to images\n",
    "for img_file in sorted(os.listdir(path)):\n",
    "    if img_file.endswith(\".jpg\"):\n",
    "        img_path = os.path.join(path, img_file)\n",
    "        base64_image = encode_image(img_path)\n",
    "        img_base64_list.append(base64_image)\n",
    "        image_summaries.append(image_summarize(base64_image, prompt))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "87e03f07-4c82-4743-a3c6-d0597fb55107",
   "metadata": {},
   "source": [
    "### Option 2a: Multi-vector retriever w/ raw images\n",
    "\n",
    "* Return images to LLM for answer synthesis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "6bf8a07d-203f-4397-8b0b-a84ec4d0adab",
   "metadata": {},
   "outputs": [],
   "source": [
    "import uuid\n",
    "from base64 import b64decode\n",
    "\n",
    "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
    "from langchain.storage import InMemoryStore\n",
    "from langchain_core.documents import Document\n",
    "\n",
    "\n",
    "def create_multi_vector_retriever(\n",
    "    vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images\n",
    "):\n",
    "    # Initialize the storage layer\n",
    "    store = InMemoryStore()\n",
    "    id_key = \"doc_id\"\n",
    "\n",
    "    # Create the multi-vector retriever\n",
    "    retriever = MultiVectorRetriever(\n",
    "        vectorstore=vectorstore,\n",
    "        docstore=store,\n",
    "        id_key=id_key,\n",
    "    )\n",
    "\n",
    "    # Helper function to add documents to the vectorstore and docstore\n",
    "    def add_documents(retriever, doc_summaries, doc_contents):\n",
    "        doc_ids = [str(uuid.uuid4()) for _ in doc_contents]\n",
    "        summary_docs = [\n",
    "            Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
    "            for i, s in enumerate(doc_summaries)\n",
    "        ]\n",
    "        retriever.vectorstore.add_documents(summary_docs)\n",
    "        retriever.docstore.mset(list(zip(doc_ids, doc_contents)))\n",
    "\n",
    "    # Add texts, tables, and images\n",
    "    # Check that text_summaries is not empty before adding\n",
    "    if text_summaries:\n",
    "        add_documents(retriever, text_summaries, texts)\n",
    "    # Check that table_summaries is not empty before adding\n",
    "    if table_summaries:\n",
    "        add_documents(retriever, table_summaries, tables)\n",
    "    # Check that image_summaries is not empty before adding\n",
    "    if image_summaries:\n",
    "        add_documents(retriever, image_summaries, images)\n",
    "\n",
    "    return retriever\n",
    "\n",
    "\n",
    "# The vectorstore to use to index the summaries\n",
    "multi_vector_img = Chroma(\n",
    "    collection_name=\"multi_vector_img\", embedding_function=OpenAIEmbeddings()\n",
    ")\n",
    "\n",
    "# Create retriever\n",
    "retriever_multi_vector_img = create_multi_vector_retriever(\n",
    "    multi_vector_img,\n",
    "    text_summaries,\n",
    "    texts,\n",
    "    table_summaries,\n",
    "    tables,\n",
    "    image_summaries,\n",
    "    img_base64_list,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "84d5b4ea-51b8-49cf-8ad1-db8f7a50e3cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Testing on retrieval\n",
    "query = \"What percentage of CPI is dedicated to Housing, and how does it compare to the combined percentage of Medical Care, Apparel, and Other Goods and Services?\"\n",
    "suffix_for_images = \" Include any pie charts, graphs, or tables.\"\n",
    "docs = retriever_multi_vector_img.invoke(query + suffix_for_images)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "8db51ac6-ec0c-4c5d-a9a7-0316035e139d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<img src=\"\" />"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import HTML, display\n",
    "\n",
    "\n",
    "def plt_img_base64(img_base64):\n",
    "    # Create an HTML img tag with the base64 string as the source\n",
    "    image_html = f'<img src=\"data:image/jpeg;base64,{img_base64}\" />'\n",
    "\n",
    "    # Display the image by rendering the HTML\n",
    "    display(HTML(image_html))\n",
    "\n",
    "\n",
    "plt_img_base64(docs[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "48b268ec-db04-4107-9833-ea1615f6dbd1",
   "metadata": {},
   "source": [
    "### Option 2b: Multi-vector retriever w/ image summaries\n",
    "\n",
    "* Return text summary of images to LLM for answer synthesis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "ae57c804-0dd1-4806-b761-a913efc4f173",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The vectorstore to use to index the summaries\n",
    "multi_vector_text = Chroma(\n",
    "    collection_name=\"multi_vector_text\", embedding_function=OpenAIEmbeddings()\n",
    ")\n",
    "\n",
    "# Create retriever\n",
    "retriever_multi_vector_img_summary = create_multi_vector_retriever(\n",
    "    multi_vector_text,\n",
    "    text_summaries,\n",
    "    texts,\n",
    "    table_summaries,\n",
    "    tables,\n",
    "    image_summaries,\n",
    "    image_summaries,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "580a3d55-5025-472d-9c14-cec7a384379f",
   "metadata": {},
   "source": [
    "### Option 3: Multi-modal embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "8dbed5dc-f7a3-4324-9436-1c3ebc24f9fd",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
    "\n",
    "# Create chroma w/ multi-modal embeddings\n",
    "multimodal_embd = Chroma(\n",
    "    collection_name=\"multimodal_embd\", embedding_function=OpenCLIPEmbeddings()\n",
    ")\n",
    "\n",
    "# Get image URIs\n",
    "image_uris = sorted(\n",
    "    [\n",
    "        os.path.join(path, image_name)\n",
    "        for image_name in os.listdir(path)\n",
    "        if image_name.endswith(\".jpg\")\n",
    "    ]\n",
    ")\n",
    "\n",
    "# Add images and documents\n",
    "if image_uris:\n",
    "    multimodal_embd.add_images(uris=image_uris)\n",
    "if texts:\n",
    "    multimodal_embd.add_texts(texts=texts)\n",
    "if tables:\n",
    "    multimodal_embd.add_texts(texts=tables)\n",
    "\n",
    "# Make retriever\n",
    "retriever_multimodal_embd = multimodal_embd.as_retriever()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "647abb6c-adf3-4d29-acd2-885c4925fa12",
   "metadata": {},
   "source": [
    "## RAG\n",
    "\n",
    "### Text Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "73440ca0-4330-4c16-9d9d-6f27c249ae58",
   "metadata": {},
   "outputs": [],
   "source": [
    "from operator import itemgetter\n",
    "\n",
    "from langchain_core.runnables import RunnablePassthrough\n",
    "\n",
    "# Prompt\n",
    "template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
    "{context}\n",
    "Question: {question}\n",
    "\"\"\"\n",
    "rag_prompt_text = ChatPromptTemplate.from_template(template)\n",
    "\n",
    "\n",
    "# Build\n",
    "def text_rag_chain(retriever):\n",
    "    \"\"\"RAG chain\"\"\"\n",
    "\n",
    "    # LLM\n",
    "    model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
    "\n",
    "    # RAG pipeline\n",
    "    chain = (\n",
    "        {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
    "        | rag_prompt_text\n",
    "        | model\n",
    "        | StrOutputParser()\n",
    "    )\n",
    "\n",
    "    return chain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14b358ad-42fd-4c6d-b2c0-215dba135707",
   "metadata": {},
   "source": [
    "### Multi-modal Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "ae89ce84-283e-4634-8169-9ff16f152807",
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "\n",
    "from langchain_core.documents import Document\n",
    "from langchain_core.runnables import RunnableLambda\n",
    "\n",
    "\n",
    "def looks_like_base64(sb):\n",
    "    \"\"\"Check if the string looks like base64.\"\"\"\n",
    "    return re.match(\"^[A-Za-z0-9+/]+[=]{0,2}$\", sb) is not None\n",
    "\n",
    "\n",
    "def is_image_data(b64data):\n",
    "    \"\"\"Check if the base64 data is an image by looking at the start of the data.\"\"\"\n",
    "    image_signatures = {\n",
    "        b\"\\xff\\xd8\\xff\": \"jpg\",\n",
    "        b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
    "        b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
    "        b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
    "    }\n",
    "    try:\n",
    "        header = base64.b64decode(b64data)[:8]  # Decode and get the first 8 bytes\n",
    "        for sig, format in image_signatures.items():\n",
    "            if header.startswith(sig):\n",
    "                return True\n",
    "        return False\n",
    "    except Exception:\n",
    "        return False\n",
    "\n",
    "\n",
    "def split_image_text_types(docs):\n",
    "    \"\"\"Split base64-encoded images and texts.\"\"\"\n",
    "    b64_images = []\n",
    "    texts = []\n",
    "    for doc in docs:\n",
    "        # Check if the document is of type Document and extract page_content if so\n",
    "        if isinstance(doc, Document):\n",
    "            doc = doc.page_content\n",
    "        if looks_like_base64(doc) and is_image_data(doc):\n",
    "            b64_images.append(doc)\n",
    "        else:\n",
    "            texts.append(doc)\n",
    "    return {\"images\": b64_images, \"texts\": texts}\n",
    "\n",
    "\n",
    "def img_prompt_func(data_dict):\n",
    "    # Joining the context texts into a single string\n",
    "    formatted_texts = \"\\n\".join(data_dict[\"context\"][\"texts\"])\n",
    "    messages = []\n",
    "\n",
    "    # Adding image(s) to the messages if present\n",
    "    if data_dict[\"context\"][\"images\"]:\n",
    "        image_message = {\n",
    "            \"type\": \"image_url\",\n",
    "            \"image_url\": {\n",
    "                \"url\": f\"data:image/jpeg;base64,{data_dict['context']['images'][0]}\"\n",
    "            },\n",
    "        }\n",
    "        messages.append(image_message)\n",
    "\n",
    "    # Adding the text message for analysis\n",
    "    text_message = {\n",
    "        \"type\": \"text\",\n",
    "        \"text\": (\n",
    "            \"Answer the question based only on the provided context, which can include text, tables, and image(s). \"\n",
    "            \"If an image is provided, analyze it carefully to help answer the question.\\n\"\n",
    "            f\"User-provided question / keywords: {data_dict['question']}\\n\\n\"\n",
    "            \"Text and / or tables:\\n\"\n",
    "            f\"{formatted_texts}\"\n",
    "        ),\n",
    "    }\n",
    "    messages.append(text_message)\n",
    "    return [HumanMessage(content=messages)]\n",
    "\n",
    "\n",
    "def multi_modal_rag_chain(retriever):\n",
    "    \"\"\"Multi-modal RAG chain\"\"\"\n",
    "\n",
    "    # Multi-modal LLM\n",
    "    model = ChatOpenAI(temperature=0, model=\"gpt-4-vision-preview\", max_tokens=1024)\n",
    "\n",
    "    # RAG pipeline\n",
    "    chain = (\n",
    "        {\n",
    "            \"context\": retriever | RunnableLambda(split_image_text_types),\n",
    "            \"question\": RunnablePassthrough(),\n",
    "        }\n",
    "        | RunnableLambda(img_prompt_func)\n",
    "        | model\n",
    "        | StrOutputParser()\n",
    "    )\n",
    "\n",
    "    return chain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5e8b0e26-bb7e-420a-a7bd-8512b7eef92f",
   "metadata": {},
   "source": [
    "### Build RAG Pipelines"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "4f1ec8a9-f0fe-4f08-928f-23504803897c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# RAG chains\n",
    "chain_baseline = text_rag_chain(retriever_baseline)\n",
    "chain_mv_text = text_rag_chain(retriever_multi_vector_img_summary)\n",
    "\n",
    "# Multi-modal RAG chains\n",
    "chain_multimodal_mv_img = multi_modal_rag_chain(retriever_multi_vector_img)\n",
    "chain_multimodal_embd = multi_modal_rag_chain(retriever_multimodal_embd)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "448d943c-a1b1-4300-9197-891a03232ee4",
   "metadata": {},
   "source": [
    "## Eval set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "9aabf72f-26be-437f-9372-b06dc2509235",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Question</th>\n",
       "      <th>Answer</th>\n",
       "      <th>Source</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What percentage of CPI is dedicated to Housing?</td>\n",
       "      <td>Housing occupies 42% of CPI.</td>\n",
       "      <td>Figure 1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Medical Care and Transportation account for wh...</td>\n",
       "      <td>Transportation accounts for 18% of CPI. Medica...</td>\n",
       "      <td>Figure 1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Based on the CPI Owners' Equivalent Rent and t...</td>\n",
       "      <td>The FHFA Purchase Only Price Index appears to ...</td>\n",
       "      <td>Figure 2</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            Question  \\\n",
       "0    What percentage of CPI is dedicated to Housing?   \n",
       "1  Medical Care and Transportation account for wh...   \n",
       "2  Based on the CPI Owners' Equivalent Rent and t...   \n",
       "\n",
       "                                              Answer    Source  \n",
       "0                       Housing occupies 42% of CPI.  Figure 1  \n",
       "1  Transportation accounts for 18% of CPI. Medica...  Figure 1  \n",
       "2  The FHFA Purchase Only Price Index appears to ...  Figure 2  "
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Read\n",
    "import pandas as pd\n",
    "\n",
    "eval_set = pd.read_csv(path + \"cpi_eval.csv\")\n",
    "eval_set.head(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "7fdeb77a-e185-47d2-a93f-822f1fc810a2",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langsmith import Client\n",
    "\n",
    "# Dataset\n",
    "client = Client()\n",
    "dataset_name = f\"CPI Eval {str(uuid.uuid4())}\"\n",
    "dataset = client.create_dataset(dataset_name=dataset_name)\n",
    "\n",
    "# Populate dataset\n",
    "for _, row in eval_set.iterrows():\n",
    "    # Get Q, A\n",
    "    q = row[\"Question\"]\n",
    "    a = row[\"Answer\"]\n",
    "    # Use the values in your function\n",
    "    client.create_example(\n",
    "        inputs={\"question\": q}, outputs={\"answer\": a}, dataset_id=dataset.id\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "3c4faf4b-f29f-4a42-9cf2-bfbb5158ab59",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "View the evaluation results for project 'CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126-baseline' at:\n",
      "https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/projects/p/533846be-d907-4d9c-82db-ce2f1a18fdbf?eval=true\n",
      "\n",
      "View all tests for Dataset CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126 at:\n",
      "https://smith.langchain.com/datasets/d1762232-5e01-40e7-9978-63002a4c95a3\n",
      "[------------------------------------------------->] 4/4View the evaluation results for project 'CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126-mv_text' at:\n",
      "https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/projects/p/f5caeede-6f8e-46f7-b4f2-9f23daa31eda?eval=true\n",
      "\n",
      "View all tests for Dataset CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126 at:\n",
      "https://smith.langchain.com/datasets/d1762232-5e01-40e7-9978-63002a4c95a3\n",
      "[------------------------------------------------->] 4/4View the evaluation results for project 'CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126-mv_img' at:\n",
      "https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/projects/p/48cf1002-7ae2-451d-a9b1-5bd8088f6a69?eval=true\n",
      "\n",
      "View all tests for Dataset CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126 at:\n",
      "https://smith.langchain.com/datasets/d1762232-5e01-40e7-9978-63002a4c95a3\n",
      "[------------------------------------------------->] 4/4View the evaluation results for project 'CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126-mm_embd' at:\n",
      "https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/projects/p/aaa1c2e3-79b0-43e0-b5d5-8e3d00a51d50?eval=true\n",
      "\n",
      "View all tests for Dataset CPI Eval 9648e7fe-5ae2-469f-8701-33c63212d126 at:\n",
      "https://smith.langchain.com/datasets/d1762232-5e01-40e7-9978-63002a4c95a3\n",
      "[------------------------------------------------->] 4/4"
     ]
    }
   ],
   "source": [
    "from langchain.smith import RunEvalConfig\n",
    "\n",
    "eval_config = RunEvalConfig(\n",
    "    evaluators=[\"qa\"],\n",
    ")\n",
    "\n",
    "\n",
    "def run_eval(chain, run_name, dataset_name):\n",
    "    _ = client.run_on_dataset(\n",
    "        dataset_name=dataset_name,\n",
    "        llm_or_chain_factory=lambda: (lambda x: x[\"question\"] + suffix_for_images)\n",
    "        | chain,\n",
    "        evaluation=eval_config,\n",
    "        project_name=run_name,\n",
    "    )\n",
    "\n",
    "\n",
    "for chain, run in zip(\n",
    "    [chain_baseline, chain_mv_text, chain_multimodal_mv_img, chain_multimodal_embd],\n",
    "    [\"baseline\", \"mv_text\", \"mv_img\", \"mm_embd\"],\n",
    "):\n",
    "    run_eval(chain, dataset_name + \"-\" + run, dataset_name)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}