File size: 4,747 Bytes
4943752 d65ddc0 4943752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
"""
EvalModelCommand class
==============================
"""
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from dataclasses import dataclass
import scipy
import torch
import textattack
from textattack import DatasetArgs, ModelArgs
from textattack.commands import TextAttackCommand
from textattack.model_args import HUGGINGFACE_MODELS, TEXTATTACK_MODELS
logger = textattack.shared.utils.logger
def _cb(s):
return textattack.shared.utils.color_text(str(s), color="blue", method="ansi")
@dataclass
class ModelEvalArgs(ModelArgs, DatasetArgs):
random_seed: int = 765
batch_size: int = 32
num_examples: int = 5
num_examples_offset: int = 0
class EvalModelCommand(TextAttackCommand):
"""The TextAttack model benchmarking module:
A command line parser to evaluatate a model from user
specifications.
"""
def get_preds(self, model, inputs):
with torch.no_grad():
preds = textattack.shared.utils.batch_model_predict(model, inputs)
return preds
def test_model_on_dataset(self, args):
model = ModelArgs._create_model_from_args(args)
dataset = DatasetArgs._create_dataset_from_args(args)
if args.num_examples == -1:
args.num_examples = len(dataset)
preds = []
ground_truth_outputs = []
i = 0
while i < min(args.num_examples, len(dataset)):
dataset_batch = dataset[i : min(args.num_examples, i + args.batch_size)]
batch_inputs = []
for text_input, ground_truth_output in dataset_batch:
attacked_text = textattack.shared.AttackedText(text_input)
batch_inputs.append(attacked_text.tokenizer_input)
ground_truth_outputs.append(ground_truth_output)
batch_preds = model(batch_inputs)
if not isinstance(batch_preds, torch.Tensor):
batch_preds = torch.Tensor(batch_preds)
preds.extend(batch_preds)
i += args.batch_size
preds = torch.stack(preds).squeeze().cpu()
ground_truth_outputs = torch.tensor(ground_truth_outputs).cpu()
logger.info(f"Got {len(preds)} predictions.")
if preds.ndim == 1:
# if preds is just a list of numbers, assume regression for now
# TODO integrate with `textattack.metrics` package
pearson_correlation, _ = scipy.stats.pearsonr(ground_truth_outputs, preds)
spearman_correlation, _ = scipy.stats.spearmanr(ground_truth_outputs, preds)
logger.info(f"Pearson correlation = {_cb(pearson_correlation)}")
logger.info(f"Spearman correlation = {_cb(spearman_correlation)}")
else:
guess_labels = preds.argmax(dim=1)
successes = (guess_labels == ground_truth_outputs).sum().item()
perc_accuracy = successes / len(preds) * 100.0
perc_accuracy = "{:.2f}%".format(perc_accuracy)
logger.info(f"Correct {successes}/{len(preds)} ({_cb(perc_accuracy)})")
def run(self, args):
args = ModelEvalArgs(**vars(args))
textattack.shared.utils.set_seed(args.random_seed)
# Default to 'all' if no model chosen.
if not (args.model or args.model_from_huggingface or args.model_from_file):
for model_name in list(HUGGINGFACE_MODELS.keys()) + list(
TEXTATTACK_MODELS.keys()
):
args.model = model_name
self.test_model_on_dataset(args)
logger.info("-" * 50)
else:
self.test_model_on_dataset(args)
@staticmethod
def register_subcommand(main_parser: ArgumentParser):
parser = main_parser.add_parser(
"eval",
help="evaluate a model with TextAttack",
formatter_class=ArgumentDefaultsHelpFormatter,
)
parser = ModelArgs._add_parser_args(parser)
parser = DatasetArgs._add_parser_args(parser)
parser.add_argument("--random-seed", default=765, type=int)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="The batch size for evaluating the model.",
)
parser.add_argument(
"--num-examples",
"-n",
type=int,
required=False,
default=5,
help="The number of examples to process, -1 for entire dataset",
)
parser.add_argument(
"--num-examples-offset",
"-o",
type=int,
required=False,
default=0,
help="The offset to start at in the dataset.",
)
parser.set_defaults(func=EvalModelCommand())
|