File size: 14,418 Bytes
8c9048a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# -*- coding: utf-8 -*-


import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
from torchvision.models.vgg import VGG
# from BagData import dataloader
from data_train import dataloader
from data_val import dataloader_val
import pdb
import numpy as np 
import time
import matplotlib.pyplot as plt
# import visdom
import os




class FCN32s(nn.Module):

    def __init__(self, pretrained_net, n_class):
        super().__init__()
        self.n_class = n_class
        self.pretrained_net = pretrained_net
        self.relu    = nn.ReLU(inplace=True)
        self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn1     = nn.BatchNorm2d(512)
        self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn2     = nn.BatchNorm2d(256)
        self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn3     = nn.BatchNorm2d(128)
        self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn4     = nn.BatchNorm2d(64)
        self.deconv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn5     = nn.BatchNorm2d(32)
        self.classifier = nn.Conv2d(32, n_class, kernel_size=1)

    def forward(self, x):
        output = self.pretrained_net(x)
        x5 = output['x5']  # size=(N, 512, x.H/32, x.W/32)

        score = self.bn1(self.relu(self.deconv1(x5)))     # size=(N, 512, x.H/16, x.W/16)
        score = self.bn2(self.relu(self.deconv2(score)))  # size=(N, 256, x.H/8, x.W/8)
        score = self.bn3(self.relu(self.deconv3(score)))  # size=(N, 128, x.H/4, x.W/4)
        score = self.bn4(self.relu(self.deconv4(score)))  # size=(N, 64, x.H/2, x.W/2)
        score = self.bn5(self.relu(self.deconv5(score)))  # size=(N, 32, x.H, x.W)
        score = self.classifier(score)                    # size=(N, n_class, x.H/1, x.W/1)

        return score  # size=(N, n_class, x.H/1, x.W/1)


class FCN16s(nn.Module):

    def __init__(self, pretrained_net, n_class):
        super().__init__()
        self.n_class = n_class
        self.pretrained_net = pretrained_net
        self.relu    = nn.ReLU(inplace=True)
        self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn1     = nn.BatchNorm2d(512)
        self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn2     = nn.BatchNorm2d(256)
        self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn3     = nn.BatchNorm2d(128)
        self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn4     = nn.BatchNorm2d(64)
        self.deconv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn5     = nn.BatchNorm2d(32)
        self.classifier = nn.Conv2d(32, n_class, kernel_size=1)

    def forward(self, x):
        output = self.pretrained_net(x)
        x5 = output['x5']  # size=(N, 512, x.H/32, x.W/32)
        x4 = output['x4']  # size=(N, 512, x.H/16, x.W/16)

        score = self.relu(self.deconv1(x5))               # size=(N, 512, x.H/16, x.W/16)
        score = self.bn1(score + x4)                      # element-wise add, size=(N, 512, x.H/16, x.W/16)
        score = self.bn2(self.relu(self.deconv2(score)))  # size=(N, 256, x.H/8, x.W/8)
        score = self.bn3(self.relu(self.deconv3(score)))  # size=(N, 128, x.H/4, x.W/4)
        score = self.bn4(self.relu(self.deconv4(score)))  # size=(N, 64, x.H/2, x.W/2)
        score = self.bn5(self.relu(self.deconv5(score)))  # size=(N, 32, x.H, x.W)
        score = self.classifier(score)                    # size=(N, n_class, x.H/1, x.W/1)

        return score  # size=(N, n_class, x.H/1, x.W/1)


class FCN8s(nn.Module):

    def __init__(self, pretrained_net, n_class):
        super().__init__()
        self.n_class = n_class
        self.pretrained_net = pretrained_net
        self.relu    = nn.ReLU(inplace=True)
        self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn1     = nn.BatchNorm2d(512)
        self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn2     = nn.BatchNorm2d(256)
        self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn3     = nn.BatchNorm2d(128)
        self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn4     = nn.BatchNorm2d(64)
        self.deconv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn5     = nn.BatchNorm2d(32)
        self.classifier = nn.Conv2d(32, n_class, kernel_size=1)

    def forward(self, x):
        output = self.pretrained_net(x)
        x5 = output['x5']  # size=(N, 512, x.H/32, x.W/32)
        x4 = output['x4']  # size=(N, 512, x.H/16, x.W/16)
        x3 = output['x3']  # size=(N, 256, x.H/8,  x.W/8)

        score = self.relu(self.deconv1(x5))               # size=(N, 512, x.H/16, x.W/16)
        score = self.bn1(score + x4)                      # element-wise add, size=(N, 512, x.H/16, x.W/16)
        score = self.relu(self.deconv2(score))            # size=(N, 256, x.H/8, x.W/8)
        score = self.bn2(score + x3)                      # element-wise add, size=(N, 256, x.H/8, x.W/8)
        score = self.bn3(self.relu(self.deconv3(score)))  # size=(N, 128, x.H/4, x.W/4)
        score = self.bn4(self.relu(self.deconv4(score)))  # size=(N, 64, x.H/2, x.W/2)
        score = self.bn5(self.relu(self.deconv5(score)))  # size=(N, 32, x.H, x.W)
        score = self.classifier(score)                    # size=(N, n_class, x.H/1, x.W/1)

        return score  # size=(N, n_class, x.H/1, x.W/1)


class FCNs(nn.Module):

    def __init__(self, pretrained_net, n_class):
        super().__init__()
        self.n_class = n_class
        self.pretrained_net = pretrained_net
        self.relu    = nn.ReLU(inplace=True)
        self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn1     = nn.BatchNorm2d(512)
        self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn2     = nn.BatchNorm2d(256)
        self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn3     = nn.BatchNorm2d(128)
        self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn4     = nn.BatchNorm2d(64)
        self.deconv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
        self.bn5     = nn.BatchNorm2d(32)
        self.classifier = nn.Conv2d(32, n_class, kernel_size=1)

    def forward(self, x):
        output = self.pretrained_net(x)
        x5 = output['x5']  # size=(N, 512, x.H/32, x.W/32)
        x4 = output['x4']  # size=(N, 512, x.H/16, x.W/16)
        x3 = output['x3']  # size=(N, 256, x.H/8,  x.W/8)
        x2 = output['x2']  # size=(N, 128, x.H/4,  x.W/4)
        x1 = output['x1']  # size=(N, 64, x.H/2,  x.W/2)

        score = self.bn1(self.relu(self.deconv1(x5)))     # size=(N, 512, x.H/16, x.W/16)
        score = score + x4                                # element-wise add, size=(N, 512, x.H/16, x.W/16)
        score = self.bn2(self.relu(self.deconv2(score)))  # size=(N, 256, x.H/8, x.W/8)
        score = score + x3                                # element-wise add, size=(N, 256, x.H/8, x.W/8)
        score = self.bn3(self.relu(self.deconv3(score)))  # size=(N, 128, x.H/4, x.W/4)
        score = score + x2                                # element-wise add, size=(N, 128, x.H/4, x.W/4)
        score = self.bn4(self.relu(self.deconv4(score)))  # size=(N, 64, x.H/2, x.W/2)
        score = score + x1                                # element-wise add, size=(N, 64, x.H/2, x.W/2)
        score = self.bn5(self.relu(self.deconv5(score)))  # size=(N, 32, x.H, x.W)
        score = self.classifier(score)                    # size=(N, n_class, x.H/1, x.W/1)

        return score  # size=(N, n_class, x.H/1, x.W/1)


class VGGNet(VGG):
    def __init__(self, pretrained=True, model='vgg16', requires_grad=True, remove_fc=True, show_params=False):
        super().__init__(make_layers(cfg[model]))
        self.ranges = ranges[model]

        if pretrained:
            exec("self.load_state_dict(models.%s(pretrained=True).state_dict())" % model)

        if not requires_grad:
            for param in super().parameters():
                param.requires_grad = False

        if remove_fc:  # delete redundant fully-connected layer params, can save memory
            del self.classifier

        if show_params:
            for name, param in self.named_parameters():
                print(name, param.size())

    def forward(self, x):
        output = {}
        # get the output of each maxpooling layer (5 maxpool in VGG net)
        for idx in range(len(self.ranges)):
            for layer in range(self.ranges[idx][0], self.ranges[idx][1]):
                x = self.features[layer](x)
            output["x%d"%(idx+1)] = x

        return output


ranges = {
    'vgg11': ((0, 3), (3, 6),  (6, 11),  (11, 16), (16, 21)),
    'vgg13': ((0, 5), (5, 10), (10, 15), (15, 20), (20, 25)),
    'vgg16': ((0, 5), (5, 10), (10, 17), (17, 24), (24, 31)),
    'vgg19': ((0, 5), (5, 10), (10, 19), (19, 28), (28, 37))
}

# cropped version from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
cfg = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


if __name__ == "__main__":
    # vis = visdom.Visdom()
    vgg_model = VGGNet(requires_grad=True)
    fcn_model = FCNs(pretrained_net=vgg_model, n_class=2)
    fcn_model = fcn_model.cuda()
    criterion = nn.BCELoss().cuda()
    optimizer = optim.SGD(fcn_model.parameters(), lr=1e-2, momentum=0.7)
    #input = torch.autograd.Variable(torch.randn(batch_size, 3, h, w))
    #y = torch.autograd.Variable(torch.randn(batch_size, n_class, h, w), requires_grad=False)
    # saving_index =0
    print('Train {},Validation {}'.format(len(dataloader)*4,len(dataloader_val)*4))
    epochs=10
    train_loss=[]
    valid_loss=[]
    for epo in range(epochs):
        start = time.time()
        
        epo_loss = 0
        fcn_model.train()
        for item in dataloader:
            input = item['A']
            y = item['B']
            input = torch.autograd.Variable(input)
            y = torch.autograd.Variable(y)
            input = input.cuda()
            y = y.cuda()
            optimizer.zero_grad()
            output = fcn_model(input)
            output = nn.functional.sigmoid(output)
            loss = criterion(output, y)
            loss.backward()
            epo_loss +=  loss.item()
            optimizer.step()

            # output_np = output.cpu().data.numpy().copy()
            # output_np = np.argmin(output_np, axis=1)
            # y_np = y.cpu().data.numpy().copy()
            # y_np = np.argmin(y_np, axis=1)
            
        val_loss = 0
        fcn_model.eval()
        with torch.no_grad():
            for item in dataloader_val:
                input = item['A']
                y = item['B']
                input = torch.autograd.Variable(input)
                y = torch.autograd.Variable(y)
                input = input.cuda()
                y = y.cuda()
                optimizer.zero_grad()
                output = fcn_model(input)
                output = nn.functional.sigmoid(output)
                loss = criterion(output, y)
                
                val_loss += loss.item()
            # optimizer.step()
            
            # output_np = output.cpu().data.numpy().copy()
            # output_np = np.argmin(output_np, axis=1)
            # y_np = y.cpu().data.numpy().copy()
            # y_np = np.argmin(y_np, axis=1)
            

        end = time.time()
        trainingLoss = epo_loss/len(dataloader)
        validationLoss = val_loss/len(dataloader_val)
        train_loss.append(trainingLoss)
        valid_loss.append(validationLoss)
        print('epoch loss = %f'%(trainingLoss),
               'validation loss = %f'%(validationLoss),
              'time cost',end-start,'s')
        
        # if np.mod(saving_index, 2)==1:
        if not os.path.exists('checkpoints'):
            os.makedirs('checkpoints')
        torch.save(fcn_model, 'checkpoints/fcn_model_{}.pt'.format(epo))
        print('saveing checkpoints/fcn_model_{}.pt \n'.format(epo))
    
        np.save('training loss', train_loss)
        np.save('validation loss', valid_loss)
    
        # imagename = 'Loss'
        # print(a)
    y1 = train_loss
    y2 = valid_loss
        # print(y)
    x = np.array(range(epochs))
        # print(x.shape)
    plt.plot(x,y1, label = 'trainingloss')
    plt.plot(x,y2, label = 'validloss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.savefig('Loss'+'.png')
    plt.show()