Spaces:
Sleeping
Sleeping
File size: 41,683 Bytes
d765e79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 |
from __future__ import annotations
import spaces
import torch
from PIL import Image
from einops import rearrange
from torchvision.transforms.v2 import (
Compose,
Resize,
InterpolationMode,
ToImage,
ToDtype,
Normalize,
)
from transformers import CodeGenTokenizerFast as Tokenizer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import re
import math
from typing import Optional
from transformers import PretrainedConfig
import math
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast
pad_input, unpad_input = None, None
FlashRotaryEmbedding = None
FlashSelfAttention, FlashCrossAttention = None, None
FusedDense = None
if torch.cuda.is_available():
DEVICE = "cuda"
DTYPE = torch.float16
else:
DEVICE = "cpu"
DTYPE = torch.float32
class PhiConfig(PretrainedConfig):
"""Phi configuration."""
model_type = "phi-msft"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size: int = 50304,
n_positions: int = 2048,
n_embd: int = 1024,
n_layer: int = 20,
n_inner: Optional[int] = None,
n_head: int = 16,
n_head_kv: Optional[int] = None,
rotary_dim: Optional[int] = 32,
activation_function: Optional[str] = "gelu_new",
flash_attn: bool = False,
flash_rotary: bool = False,
fused_dense: bool = False,
attn_pdrop: float = 0.0,
embd_pdrop: float = 0.0,
resid_pdrop: float = 0.0,
layer_norm_epsilon: float = 1e-5,
initializer_range: float = 0.02,
tie_word_embeddings: bool = False,
pad_vocab_size_multiple: int = 64,
gradient_checkpointing: bool = False,
**kwargs,
) -> None:
self.vocab_size = int(
math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_inner = n_inner
self.n_head = n_head
self.n_head_kv = n_head_kv
self.rotary_dim = min(rotary_dim, n_embd // n_head)
self.activation_function = activation_function
self.flash_attn = flash_attn
self.flash_rotary = flash_rotary
self.fused_dense = fused_dense
self.attn_pdrop = attn_pdrop
self.embd_pdrop = embd_pdrop
self.resid_pdrop = resid_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.gradient_checkpointing = gradient_checkpointing
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
@dataclass
class InferenceParams:
"""Inference parameters passed to model to efficiently calculate
and store context during inference.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
Args:
max_seqlen: Maximum sequence length.
max_batch_size: Maximum batch size.
seqlen_offset: Sequence length offset.
batch_size_offset: Batch size offset.
key_value_memory_dict: Key value memory dictionary.
lengths_per_sample: Lengths per sample.
"""
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
key_value_memory_dict: Dict[str, Any] = field(
default_factory=dict, metadata={"help": "Key value memory dictionary."}
)
lengths_per_sample: torch.Tensor = field(
default=None, metadata={"help": "Lengths per sample."}
)
class Embedding(nn.Module):
"""Token embedding with dropout."""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.wte(input_ids)
hidden_states = self.drop(hidden_states)
return hidden_states
# @torch.compile
def _apply_rotary_emb(
x: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
) -> torch.FloatTensor:
_, seqlen, _, _ = x.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
x_rot = x[:, :, :, :rotary_dim]
x_pass = x[:, :, :, rotary_dim:]
x1, x2 = x_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
sin[:seqlen], "s d -> s 1 d"
)
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
return torch.cat([x_rot, x_pass], axis=-1)
# @torch.compile
def _apply_rotary_emb_kv(
kv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = kv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
k_rot = kv[:, :, 0, :, :rotary_dim]
k_pass = kv[:, :, 0, :, rotary_dim:]
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
sin[:seqlen], "s d -> s 1 d"
)
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
return torch.cat(
[
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
kv[:, :, 1:2, :, :],
],
axis=2,
)
# @torch.compile
def _apply_rotary_emb_qkv(
qkv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = qkv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
q_rot = qkv[:, :, 0, :, :rotary_dim]
q_pass = qkv[:, :, 0, :, rotary_dim:]
k_rot = qkv[:, :, 1, :, :rotary_dim]
k_pass = qkv[:, :, 1, :, rotary_dim:]
q1, q2 = q_rot.chunk(2, dim=-1)
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
sin[:seqlen], "s d -> s 1 d"
)
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
return torch.cat(
[
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
qkv[:, :, 2:3, :, :],
],
axis=2,
)
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding (RoPE).
Reference:
RoFormer: Enhanced Transformer with Rotary Position Embedding.
https://arxiv.org/pdf/2104.09864.pdf.
"""
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
pos_idx_in_fp32: bool = True,
max_position_embeddings: int = 2048,
device: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
if scale_base is not None:
raise NotImplementedError
self.dim = dim
self.base = float(base)
self.scale_base = scale_base
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.max_position_embeddings = max_position_embeddings
self.device = device
# Generate and save the inverse frequency buffer (non-trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Generate and save the scale buffer (non-trainable)
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
# Initialize cached attributes since ONNX can't rely on dynamic initialization
self._update_cos_sin_cache(
max_position_embeddings, device=device, dtype=torch.float32
)
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(
self,
seqlen: int,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
self._seq_len_cached = seqlen
# fp32 is preferred since the output of `torch.arange` can be quite large
# and bf16 would lose a lot of precision
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# Force the scale multiplication to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: int = 0,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if (
self._seq_len_cached < qkv.shape[1] + seqlen_offset
or self._cos_cached.device != qkv.device
or self._cos_cached.dtype != qkv.dtype
or (self.training and self._cos_cached.is_inference())
):
self._update_cos_sin_cache(
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
)
if kv is None:
return _apply_rotary_emb_qkv(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
else:
q = _apply_rotary_emb(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
kv = _apply_rotary_emb_kv(
kv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
return q, kv
class MLP(nn.Module):
"""Multi-Layer Perceptron.
Reference:
Attention Is All You Need.
https://arxiv.org/pdf/1706.03762.pdf.
"""
def __init__(
self,
config: PretrainedConfig,
n_inner: Optional[int] = None,
act_fn: Optional[str] = None,
) -> None:
super().__init__()
act_fn = config.activation_function if act_fn is None else act_fn
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SelfAttention(nn.Module):
"""Self-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
class CrossAttention(nn.Module):
"""Cross-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]:
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
)
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def _find_mha_dims(
config: PretrainedConfig,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
) -> Tuple[int, int]:
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
if n_head_kv is None:
n_head_kv = getattr(config, "n_head_kv", None) or n_head
return n_head, n_head_kv, head_dim
def _update_kv_cache(
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
) -> torch.FloatTensor:
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
# When the current sequence length is equal to or larger than the maximum sequence length,
# we need to concatenate the current `kv` with the cached `kv` to expand its length
if sequence_end >= inference_params.max_seqlen:
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate(
(inference_params.key_value_memory_dict[layer_idx], kv), dim=1
)
inference_params.key_value_memory_dict[layer_idx][
batch_start:batch_end, sequence_start:sequence_end, ...
] = kv
kv = inference_params.key_value_memory_dict[layer_idx][
batch_start:batch_end, :sequence_end, ...
]
return kv
class MHA(nn.Module):
"""Multi-head attention layer."""
def __init__(
self,
config: PretrainedConfig,
dtype: Optional[torch.dtype] = None,
device: Optional[str] = None,
rotary_dim: Optional[int] = None,
rotary_base: float = 10000.0,
rotary_scale_base: Optional[float] = None,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
bias: bool = True,
causal: bool = True,
softmax_scale: Optional[float] = None,
layer_idx: Optional[int] = None,
return_residual: bool = False,
checkpointing: bool = False,
) -> None:
super().__init__()
# Rotary embedding
self.rotary_dim = (
rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
)
if self.rotary_dim > 0:
self.rotary_emb = RotaryEmbedding(
self.rotary_dim,
base=rotary_base,
scale_base=rotary_scale_base,
device=device,
max_position_embeddings=config.n_positions,
)
# MLP
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
)
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
hidden_size = config.n_embd
linear_cls = FusedDense if config.fused_dense else nn.Linear
if linear_cls is None:
linear_cls = nn.Linear
self.Wqkv = linear_cls(
hidden_size, op_size, bias=bias, device=device, dtype=dtype
)
self.out_proj = linear_cls(
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
)
# Attention
self.inner_attn = SelfAttention(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.inner_cross_attn = CrossAttention(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def _forward_self_attn(
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
) -> torch.FloatTensor:
qkv = self.Wqkv(x)
qkv = rearrange(
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
)
if self.rotary_dim > 0:
qkv = self.rotary_emb(qkv)
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_attn, qkv, key_padding_mask=key_padding_mask
)
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
def _forward_cross_attn(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams],
key_padding_mask: Optional[torch.BoolTensor],
) -> torch.FloatTensor:
batch_size = x.shape[0]
qkv = self.Wqkv(x)
q = qkv[..., : self.n_head * self.head_dim]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = qkv[..., self.n_head * self.head_dim :]
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
seqlen_offset = (
past_key_values.seqlen_offset if past_key_values is not None else 0
)
causal = None if seqlen_offset == 0 else False
if self.rotary_dim > 0:
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
return self.inner_cross_attn(
q, kv, key_padding_mask=key_padding_mask, causal=causal
)
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
if attention_mask is not None:
attention_mask = attention_mask.bool()
else:
attention_mask = None
# MHA
if self.n_head == self.n_head_kv:
if past_key_values is None:
# If `past_key_values` are not supplied, we run self-attention
attn_output = self._forward_self_attn(x, attention_mask)
else:
# If `past_key_values` are supplied, it means that we might have cached values and
# could take advantage of cross-attention
attn_output = self._forward_cross_attn(
x, past_key_values, attention_mask
)
# MQA / GQA
else:
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
# because `q` and `kv` lengths might be different
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.out_proj(output)
return output if not self.return_residual else (output, x)
class ParallelBlock(nn.Module):
"""Parallel block.
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
"""
def __init__(
self,
config: PretrainedConfig,
block_idx: Optional[int] = None,
) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class CausalLMHead(nn.Module):
"""Causal Language Modeling head.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
logits = self.linear(hidden_states).to(torch.float32)
return logits
class CausalLMLoss(nn.Module):
"""Causal Language Modeling loss.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self, logits: torch.FloatTensor, labels: torch.LongTensor
) -> torch.FloatTensor:
if self.shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return loss
class PhiPreTrainedModel(PreTrainedModel):
"""Phi pre-trained model."""
config_class = PhiConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = False
_no_split_modules = ["ParallelBlock"]
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Dict[str, Any]:
if inputs_embeds is not None:
max_batch_size = inputs_embeds.shape[0]
seqlen_offset = inputs_embeds.shape[1] + input_ids.shape[1] - 2
elif input_ids is not None:
max_batch_size = input_ids.shape[0]
seqlen_offset = input_ids.shape[1] - 1
else:
raise ValueError(
"You have to specify either `input_ids` or `inputs_embeds`."
)
args = {}
if past_key_values is None or not (
isinstance(past_key_values, InferenceParams)
):
past_key_values = InferenceParams(
max_seqlen=self.config.n_positions,
max_batch_size=max_batch_size,
seqlen_offset=0,
batch_size_offset=0,
key_value_memory_dict={},
lengths_per_sample=None,
)
if inputs_embeds is not None:
args = {"inputs_embeds": inputs_embeds}
elif input_ids is not None:
args = {"input_ids": input_ids}
else:
raise ValueError(
"You have to specify either `input_ids` or `inputs_embeds`."
)
else:
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
past_key_values.seqlen_offset = seqlen_offset
input_ids = input_ids[:, -1].unsqueeze(-1)
args = {"input_ids": input_ids}
return {
**args,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
class PhiModel(PhiPreTrainedModel):
"""Phi model."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.embd = Embedding(config)
self.h = nn.ModuleList(
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embd.wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embd.wte = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both `input_ids` and `inputs_embeds` at the same time."
)
elif input_ids is None and inputs_embeds is None:
raise ValueError(
"You have to specify either `input_ids` or `inputs_embeds`."
)
elif input_ids is not None:
hidden_states = self.embd(input_ids)
else:
hidden_states = inputs_embeds
for layer in self.h:
if self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer.__call__,
hidden_states,
past_key_values,
attention_mask,
use_reentrant=True,
)
else:
hidden_states = layer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
return hidden_states
class PhiForCausalLM(PhiPreTrainedModel):
"""Phi for Causal Language Modeling."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [
r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.transformer = PhiModel(config)
self.lm_head = CausalLMHead(config)
self.loss = CausalLMLoss()
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head.linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head.linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
hidden_states = self.transformer(
input_ids,
inputs_embeds,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss(lm_logits, labels)
return CausalLMOutputWithPast(
loss=loss, logits=lm_logits, past_key_values=past_key_values
)
class VisionEncoder(nn.Module):
def __init__(self, model_path: str = "model") -> None:
super().__init__()
self.model = torch.jit.load(f"{model_path}/vision.pt").to(DEVICE, dtype=DTYPE)
self.preprocess = Compose(
[
Resize(size=(384, 384), interpolation=InterpolationMode.BICUBIC),
ToImage(),
ToDtype(torch.float32, scale=True),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
def __call__(self, image: Image) -> torch.Tensor:
with torch.no_grad():
image_vec = self.preprocess(image.convert("RGB")).unsqueeze(0)
image_vec = image_vec[:, :, :-6, :-6]
image_vec = rearrange(
image_vec, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14
)
image_vec = image_vec.to(DEVICE, dtype=DTYPE)
return self.model(image_vec)
class TextModel(nn.Module):
def __init__(self, model_path: str = "model") -> None:
super().__init__()
self.tokenizer = Tokenizer.from_pretrained(f"{model_path}/tokenizer")
phi_config = PhiConfig.from_pretrained(f"{model_path}/text_model_cfg.json")
with init_empty_weights():
self.model = PhiForCausalLM(phi_config)
self.model = load_checkpoint_and_dispatch(
self.model,
f"{model_path}/text_model.pt",
device_map={"": DEVICE},
dtype=DTYPE,
)
self.text_emb = self.model.get_input_embeddings()
def input_embeds(self, prompt, image_embeds):
embeds = []
def _add_toks(toks):
embeds.append(self.text_emb(toks))
def _tokenize(txt):
return self.tokenizer(
txt, return_tensors="pt", add_special_tokens=False
).input_ids.to(self.model.device)
# Add BOS token
_add_toks(
torch.tensor([[self.tokenizer.bos_token_id]], device=self.model.device)
)
if "<image>" not in prompt:
embeds.append(self.text_emb(_tokenize(prompt)))
else:
assert prompt.count("<image>") == 1
before, after = prompt.split("<image>")
embeds.append(self.text_emb(_tokenize(f"{before}<image>")))
embeds.append(image_embeds.to(self.model.device))
embeds.append(self.text_emb(_tokenize(f"</image>{after}")))
return torch.cat(embeds, dim=1)
def generate(
self, image_embeds, prompt, eos_text="Human:", max_new_tokens=128, **kwargs
):
eos_tokens = self.tokenizer(eos_text, add_special_tokens=False)[0].ids
generate_config = {
"eos_token_id": eos_tokens,
"bos_token_id": self.tokenizer.bos_token_id,
"pad_token_id": self.tokenizer.eos_token_id,
"max_new_tokens": max_new_tokens,
**kwargs,
}
with torch.no_grad():
inputs_embeds = self.input_embeds(prompt, image_embeds)
output_ids = self.model.generate(
inputs_embeds=inputs_embeds, **generate_config
)
return self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
def answer_question(self, image_embeds, question, **kwargs):
prompt = f"<image>\n\nQuestion: {question}\n\nAnswer:"
answer = self.generate(
image_embeds,
prompt,
eos_text="<END>",
max_new_tokens=128,
**kwargs,
)[0]
return re.sub("<$", "", re.sub("END$", "", answer)).strip()
##### GRADIO INTERFACE #####
import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
from transformers import TextIteratorStreamer
import hashlib
import os
model_path = snapshot_download("vikhyatk/moondream1", revision="3b9dfe7f7fc461b17aa5f16aadefe60cfc2150c9")
vision_encoder = VisionEncoder(model_path).to(DEVICE, dtype=DTYPE)
text_model = TextModel(model_path).to(DEVICE, dtype=DTYPE)
def cached_vision_encoder(image):
# Calculate checksum of the image
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
# Check if `image_encoder_cache/{image_hash}.pt` exists, if so load and return it.
# Otherwise, save the encoded image to `image_encoder_cache/{image_hash}.pt` and return it.
cache_path = f"image_encoder_cache/{image_hash}.pt"
if os.path.exists(cache_path):
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
else:
image_vec = vision_encoder(image).to("cpu", dtype=torch.float16)
os.makedirs("image_encoder_cache", exist_ok=True)
torch.save(image_vec, cache_path)
return image_vec.to(DEVICE, dtype=DTYPE)
@spaces.GPU(duration=10)
def answer_question(image, question):
yield "Encoding image..."
streamer = TextIteratorStreamer(text_model.tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
image_embeds=cached_vision_encoder(image), question=question, streamer=streamer
)
thread = Thread(target=text_model.answer_question, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
if len(buffer) > 1:
yield re.sub("<$", "", re.sub("END$", "", buffer))
with gr.Blocks() as demo:
gr.HTML("<h1 class='gradio-heading'><center>🌔 moondream</center></h1>")
gr.HTML(
"<center><p class='gradio-sub-heading'>moondream1 is a tiny (1.6B parameter) vision language model trained by <a href='https://x.com/vikhyatk'>@vikhyatk</a> that performs on par with models twice its size. It is trained on the LLaVa training dataset, and initialized with SigLIP as the vision tower and Phi-1.5 as the text encoder. Check out the <a href='https://huggingface.co/vikhyatk/moondream1'>HuggingFace model card</a> for more details.</p></center>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Question", placeholder="e.g. What is this?", scale=4
)
submit = gr.Button(
"Submit",
scale=1,
)
with gr.Row():
img = gr.Image(type="pil", label="Upload or Drag an Image")
output = gr.TextArea(label="Answer")
# handling events
submit.click(answer_question, [img, prompt], output)
prompt.submit(answer_question, [img, prompt], output)
demo.queue().launch(debug=True)
# gr.Interface(
# title="🌔 moondream1",
# description="""
# moondream1 is a tiny (1.6B parameter) vision language model trained by <a href="https://x.com/vikhyatk">@vikhyatk</a> that performs on par with models twice its size. It is trained on the LLaVa training dataset, and initialized with SigLIP as the vision tower and Phi-1.5 as the text encoder. Check out the <a href="https://huggingface.co/vikhyatk/moondream1">HuggingFace model card</a> for more details.
# """,
# fn=answer_question,
# inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, label="Question")],
# examples=[
# [Image.open("assets/demo-1.jpg"), "Who is the author of this book?"],
# [Image.open("assets/demo-2.jpg"), "What type of food is the girl eating?"],
# [
# Image.open("assets/demo-3.jpg"),
# "What kind of public transportation is in the image?",
# ],
# [Image.open("assets/demo-4.jpg"), "What is the girl looking at?"],
# [Image.open("assets/demo-5.jpg"), "What kind of dog is in the picture?"],
# ],
# outputs=gr.TextArea(label="Answer"),
# allow_flagging="never",
# cache_examples=False,
# ).launch() |