File size: 3,783 Bytes
f74338c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
from flask import Flask, render_template, request
from difflib import HtmlDiff
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
app = Flask(__name__)
# Load Grammarly Coedit-Large model
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-large")
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-large")
# Load custom dataset
custom_dataset_path = "styleguide_words.csv"
custom_dataset = pd.read_csv(custom_dataset_path)
# Create a mapping between words to be replaced and their replacements
replacement_mapping = dict(zip(custom_dataset["Not Allowed"], custom_dataset["Replacement"]))
@app.route('/')
def index():
return render_template('index.html')
@app.route('/correct', methods=['POST'])
def correct():
text = request.form['text']
corrected_text = grammar_correction(text)
return render_template('result.html', original_text=text, corrected_text=corrected_text)
@app.route('/styleguide', methods=['POST'])
def styleguide():
text = request.form['corrected_text']
highlighted_text, suggestions = apply_styleguide(text)
return render_template('styleguide.html', corrected_text=text, highlighted_text=highlighted_text, suggestions=suggestions)
@app.route('/compare', methods=['POST'])
def compare():
original_text = request.form['original_text']
final_text = request.form['final_text']
highlighted_changes = highlight_changes(original_text, final_text)
return render_template('compare.html', original_text=original_text, final_text=final_text, highlighted_changes=highlighted_changes)
def grammar_correction(text):
# Split the text into sentences
sentences = text.split(". ")
corrected_sentences = []
for sentence in sentences:
# Check if the sentence is a command (starts with "-" or contains "_")
if sentence.startswith("-") or "_" in sentence:
corrected_sentences.append(sentence) # Skip the command line
continue
# Tokenize input text
input_ids = tokenizer(sentence, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
corrected_sentences.append(edited_text)
# inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
# # Generate corrected text using the model
# with torch.no_grad():
# outputs = model.generate(**inputs)
# # Decode and append corrected sentence to list
# corrected_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
# corrected_sentences.append(corrected_sentence)
# Join the corrected sentences into a single paragraph
corrected_text = ". ".join(corrected_sentences)
return corrected_text
def apply_styleguide(text):
# Highlight words mentioned in the CSV file and suggest replacements
highlighted_text = text
suggestions = []
for not_allowed_word, replacement_word in replacement_mapping.items():
if not_allowed_word in highlighted_text:
highlighted_text = highlighted_text.replace(not_allowed_word, f'<span style="background-color: yellow">{not_allowed_word}</span> ({replacement_word})')
suggestions.append((not_allowed_word, replacement_word))
return highlighted_text, suggestions
def highlight_changes(original_text, final_text):
# Function to highlight changes between original and final text
# You can modify this function as needed
diff = HtmlDiff()
highlighted_changes = diff.make_table(original_text.splitlines(), final_text.splitlines(), context=True, numlines=2)
return highlighted_changes
if __name__ == '__main__':
app.run(debug=True) |