Spaces:
Running
Running
File size: 14,882 Bytes
13580fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# -*- coding: utf-8 -*-
# File : batchnorm.py
# Author : Jiayuan Mao
# Email : maojiayuan@gmail.com
# Date : 27/01/2018
#
# This file is part of Synchronized-BatchNorm-PyTorch.
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# Distributed under MIT License.
import collections
import torch
import torch.nn.functional as F
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
from .comm import SyncMaster
__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d']
def _sum_ft(tensor):
"""sum over the first and last dimention"""
return tensor.sum(dim=0).sum(dim=-1)
def _unsqueeze_ft(tensor):
"""add new dementions at the front and the tail"""
return tensor.unsqueeze(0).unsqueeze(-1)
_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size'])
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
# _MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'ssum', 'sum_size'])
class _SynchronizedBatchNorm(_BatchNorm):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)
self._sync_master = SyncMaster(self._data_parallel_master)
self._is_parallel = False
self._parallel_id = None
self._slave_pipe = None
def forward(self, input, gain=None, bias=None):
# If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
if not (self._is_parallel and self.training):
out = F.batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
self.training, self.momentum, self.eps)
if gain is not None:
out = out + gain
if bias is not None:
out = out + bias
return out
# Resize the input to (B, C, -1).
input_shape = input.size()
# print(input_shape)
input = input.view(input.size(0), input.size(1), -1)
# Compute the sum and square-sum.
sum_size = input.size(0) * input.size(2)
input_sum = _sum_ft(input)
input_ssum = _sum_ft(input ** 2)
# Reduce-and-broadcast the statistics.
# print('it begins')
if self._parallel_id == 0:
mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
else:
mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
# if self._parallel_id == 0:
# # print('here')
# sum, ssum, num = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
# else:
# # print('there')
# sum, ssum, num = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
# print('how2')
# num = sum_size
# print('Sum: %f, ssum: %f, sumsize: %f, insum: %f' %(float(sum.sum().cpu()), float(ssum.sum().cpu()), float(sum_size), float(input_sum.sum().cpu())))
# Fix the graph
# sum = (sum.detach() - input_sum.detach()) + input_sum
# ssum = (ssum.detach() - input_ssum.detach()) + input_ssum
# mean = sum / num
# var = ssum / num - mean ** 2
# # var = (ssum - mean * sum) / num
# inv_std = torch.rsqrt(var + self.eps)
# Compute the output.
if gain is not None:
# print('gaining')
# scale = _unsqueeze_ft(inv_std) * gain.squeeze(-1)
# shift = _unsqueeze_ft(mean) * scale - bias.squeeze(-1)
# output = input * scale - shift
output = (input - _unsqueeze_ft(mean)) * (_unsqueeze_ft(inv_std) * gain.squeeze(-1)) + bias.squeeze(-1)
elif self.affine:
# MJY:: Fuse the multiplication for speed.
output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias)
else:
output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std)
# Reshape it.
return output.view(input_shape)
def __data_parallel_replicate__(self, ctx, copy_id):
self._is_parallel = True
self._parallel_id = copy_id
# parallel_id == 0 means master device.
if self._parallel_id == 0:
ctx.sync_master = self._sync_master
else:
self._slave_pipe = ctx.sync_master.register_slave(copy_id)
def _data_parallel_master(self, intermediates):
"""Reduce the sum and square-sum, compute the statistics, and broadcast it."""
# Always using same "device order" makes the ReduceAdd operation faster.
# Thanks to:: Tete Xiao (http://tetexiao.com/)
intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())
to_reduce = [i[1][:2] for i in intermediates]
to_reduce = [j for i in to_reduce for j in i] # flatten
target_gpus = [i[1].sum.get_device() for i in intermediates]
sum_size = sum([i[1].sum_size for i in intermediates])
sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)
broadcasted = Broadcast.apply(target_gpus, mean, inv_std)
# print('a')
# print(type(sum_), type(ssum), type(sum_size), sum_.shape, ssum.shape, sum_size)
# broadcasted = Broadcast.apply(target_gpus, sum_, ssum, torch.tensor(sum_size).float().to(sum_.device))
# print('b')
outputs = []
for i, rec in enumerate(intermediates):
outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2])))
# outputs.append((rec[0], _MasterMessage(*broadcasted[i*3:i*3+3])))
return outputs
def _compute_mean_std(self, sum_, ssum, size):
"""Compute the mean and standard-deviation with sum and square-sum. This method
also maintains the moving average on the master device."""
assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
mean = sum_ / size
sumvar = ssum - sum_ * mean
unbias_var = sumvar / (size - 1)
bias_var = sumvar / size
self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data
self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data
return mean, torch.rsqrt(bias_var + self.eps)
# return mean, bias_var.clamp(self.eps) ** -0.5
class SynchronizedBatchNorm1d(_SynchronizedBatchNorm):
r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a
mini-batch.
.. math::
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
This module differs from the built-in PyTorch BatchNorm1d as the mean and
standard-deviation are reduced across all devices during training.
For example, when one uses `nn.DataParallel` to wrap the network during
training, PyTorch's implementation normalize the tensor on each device using
the statistics only on that device, which accelerated the computation and
is also easy to implement, but the statistics might be inaccurate.
Instead, in this synchronized version, the statistics will be computed
over all training samples distributed on multiple devices.
Note that, for one-GPU or CPU-only case, this module behaves exactly same
as the built-in PyTorch implementation.
The mean and standard-deviation are calculated per-dimension over
the mini-batches and gamma and beta are learnable parameter vectors
of size C (where C is the input size).
During training, this layer keeps a running estimate of its computed mean
and variance. The running sum is kept with a default momentum of 0.1.
During evaluation, this running mean/variance is used for normalization.
Because the BatchNorm is done over the `C` dimension, computing statistics
on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm
Args:
num_features: num_features from an expected input of size
`batch_size x num_features [x width]`
eps: a value added to the denominator for numerical stability.
Default: 1e-5
momentum: the value used for the running_mean and running_var
computation. Default: 0.1
affine: a boolean value that when set to ``True``, gives the layer learnable
affine parameters. Default: ``True``
Shape:
- Input: :math:`(N, C)` or :math:`(N, C, L)`
- Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
Examples:
>>> # With Learnable Parameters
>>> m = SynchronizedBatchNorm1d(100)
>>> # Without Learnable Parameters
>>> m = SynchronizedBatchNorm1d(100, affine=False)
>>> input = torch.autograd.Variable(torch.randn(20, 100))
>>> output = m(input)
"""
def _check_input_dim(self, input):
if input.dim() != 2 and input.dim() != 3:
raise ValueError('expected 2D or 3D input (got {}D input)'
.format(input.dim()))
super(SynchronizedBatchNorm1d, self)._check_input_dim(input)
class SynchronizedBatchNorm2d(_SynchronizedBatchNorm):
r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch
of 3d inputs
.. math::
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
This module differs from the built-in PyTorch BatchNorm2d as the mean and
standard-deviation are reduced across all devices during training.
For example, when one uses `nn.DataParallel` to wrap the network during
training, PyTorch's implementation normalize the tensor on each device using
the statistics only on that device, which accelerated the computation and
is also easy to implement, but the statistics might be inaccurate.
Instead, in this synchronized version, the statistics will be computed
over all training samples distributed on multiple devices.
Note that, for one-GPU or CPU-only case, this module behaves exactly same
as the built-in PyTorch implementation.
The mean and standard-deviation are calculated per-dimension over
the mini-batches and gamma and beta are learnable parameter vectors
of size C (where C is the input size).
During training, this layer keeps a running estimate of its computed mean
and variance. The running sum is kept with a default momentum of 0.1.
During evaluation, this running mean/variance is used for normalization.
Because the BatchNorm is done over the `C` dimension, computing statistics
on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm
Args:
num_features: num_features from an expected input of
size batch_size x num_features x height x width
eps: a value added to the denominator for numerical stability.
Default: 1e-5
momentum: the value used for the running_mean and running_var
computation. Default: 0.1
affine: a boolean value that when set to ``True``, gives the layer learnable
affine parameters. Default: ``True``
Shape:
- Input: :math:`(N, C, H, W)`
- Output: :math:`(N, C, H, W)` (same shape as input)
Examples:
>>> # With Learnable Parameters
>>> m = SynchronizedBatchNorm2d(100)
>>> # Without Learnable Parameters
>>> m = SynchronizedBatchNorm2d(100, affine=False)
>>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45))
>>> output = m(input)
"""
def _check_input_dim(self, input):
if input.dim() != 4:
raise ValueError('expected 4D input (got {}D input)'
.format(input.dim()))
super(SynchronizedBatchNorm2d, self)._check_input_dim(input)
class SynchronizedBatchNorm3d(_SynchronizedBatchNorm):
r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch
of 4d inputs
.. math::
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
This module differs from the built-in PyTorch BatchNorm3d as the mean and
standard-deviation are reduced across all devices during training.
For example, when one uses `nn.DataParallel` to wrap the network during
training, PyTorch's implementation normalize the tensor on each device using
the statistics only on that device, which accelerated the computation and
is also easy to implement, but the statistics might be inaccurate.
Instead, in this synchronized version, the statistics will be computed
over all training samples distributed on multiple devices.
Note that, for one-GPU or CPU-only case, this module behaves exactly same
as the built-in PyTorch implementation.
The mean and standard-deviation are calculated per-dimension over
the mini-batches and gamma and beta are learnable parameter vectors
of size C (where C is the input size).
During training, this layer keeps a running estimate of its computed mean
and variance. The running sum is kept with a default momentum of 0.1.
During evaluation, this running mean/variance is used for normalization.
Because the BatchNorm is done over the `C` dimension, computing statistics
on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm
or Spatio-temporal BatchNorm
Args:
num_features: num_features from an expected input of
size batch_size x num_features x depth x height x width
eps: a value added to the denominator for numerical stability.
Default: 1e-5
momentum: the value used for the running_mean and running_var
computation. Default: 0.1
affine: a boolean value that when set to ``True``, gives the layer learnable
affine parameters. Default: ``True``
Shape:
- Input: :math:`(N, C, D, H, W)`
- Output: :math:`(N, C, D, H, W)` (same shape as input)
Examples:
>>> # With Learnable Parameters
>>> m = SynchronizedBatchNorm3d(100)
>>> # Without Learnable Parameters
>>> m = SynchronizedBatchNorm3d(100, affine=False)
>>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10))
>>> output = m(input)
"""
def _check_input_dim(self, input):
if input.dim() != 5:
raise ValueError('expected 5D input (got {}D input)'
.format(input.dim()))
super(SynchronizedBatchNorm3d, self)._check_input_dim(input) |